QUESTION

(i) Show that the function

$$
f(x)=x^{2} e^{-x}
$$

has two stationary points and determine their nature.
(ii) Determine the points of inflection of the function $f(x)$.
(iii) Given that $x=1$ is an approximate solution of the equation $3 x^{2} e^{-x}=1$ use the Newton Raphson formula ONCE to obtain a better approximation (correct to four decimal place).

ANSWER

(i)

$$
\begin{gathered}
f(x)=x^{2} e^{-x} \\
\frac{d f}{d x}=x^{2}\left(-e^{-x}\right)+e^{-x}(2 x)=\left(2 x-x^{2}\right) e^{-x}
\end{gathered}
$$

There is a stationary point when $\frac{d f}{d x}=0$, i.e. $2 x-x^{2}=0\left(e^{-x} \neq 0\right)$ therefore $x(2-x)=0$, therefore $x=0$ or $x=2$

$$
\begin{aligned}
\frac{d^{2} f}{d x^{2}} & =\left(2 x-x^{2}\right)\left(-e^{-x}\right)+e^{-x}(2-2 x) \\
& =e^{-x}\left(-2 x+x^{2}+2-2 x\right) \\
& =\left(x^{2}-4 x+2\right) e^{-x}
\end{aligned}
$$

When $x=0, \frac{d^{2} f}{d x^{2}}=2 e^{-0}=2>0$ therefore f has a minimum at $x=0$ When $x=2, \frac{d^{2} f}{d x^{2}}=\left(2^{2}-4(2)+2\right) e^{-2}=-\frac{2}{e^{2}}<0$ therefore f has a maximum at $x=2$
(ii) $\frac{d^{2} f}{d x^{2}}=0$ when $x^{2}-4 x+2=0, x=\frac{4 \pm \sqrt{\left((-4)^{2}-4(1) 2\right)}}{2}=\frac{4 \pm \sqrt{8}}{2}=$ $2 \pm \sqrt{2}$

$$
\begin{aligned}
\frac{d^{3} f}{d x^{3}} & =\left(x^{2}-4 x+2\right)\left(-e^{-x}+(2 x-4) e^{-x}\right. \\
& =e^{-x}\left(-x^{2}+4 x-2+2 x-4\right) \\
& =e^{-x}\left(-x^{2}+6 x-6\right) \\
& =-\left(x^{2}-6 x+6\right) e^{-x}
\end{aligned}
$$

When $x=2+\sqrt{2}, \frac{d^{3} f}{d x^{3}} \sim 2.83 e^{-(2+\sqrt{2})} \neq 0$
When $x=2-\sqrt{2}, \frac{d^{3} f}{d x^{3}} \sim-2.83 e^{-(2-\sqrt{2})} \neq 0$
Therefore there are inflection points at $x=2+\sqrt{2}$ and $x=2-\sqrt{2}$
(iii) $3 x^{2} e^{-x}=1, g(x)=3 x^{2} e^{-x}-1=0, \frac{d g}{d x}=3 \frac{d f}{d x}=3\left(2 x-x^{2}\right) e^{-x}$

$$
x_{1}=1-\frac{g(1)}{g^{\prime}(1)}=1-\frac{0.1036}{2.2073}=0.9531
$$

