Question
Use the mean value theorem to prove each of the following statements.

1.

If ¢’(x) is a polynomial of degree n — 1, then g(z) is a polynomial of
degree n;

cxf(x+1) <In(l+=x) <z for =1 <z <0 and for z > 0;

. sin(z) < for x > 0;

Answer

1.

Suppose that ¢'(z) = a, 12" ' +a, 22" 2+ -+a;x+ag, and consider
the new function h(z) = %an,lx" + ﬁan,ﬂ”_l + o+ %alxz + apr —
g(x). Note that since g and polynomials are differentiable, and hence
continuous, on all of R, we have that h is differentiable, and hence
continuous, on all of R. Also, h'(z) = a, 12" ' + @, 22" 2 + -+ +

a1x + ag — ¢'(xz) = 0 for all z € R.

For xy > 0, apply the mean value theorem to h on the interval [0, z).
Since h is continuous on [0,z and differentiable on (0, (), the mean
value theorem yields that there exists some c in (0, z¢) so that h(xg) —
h(0) = R (c)(zop — 0) = 0, since h'(c) = 0. That is, h(zo) = h(0) for
all zyp > 0. As above, we also get that h(xo) = h(0) for all zy < 0 by
applying the mean value theorem to h on the interval [z, 0].

Hence, setting b = h(0), we have that h(z) = b for all x € R. Substi-
tuting in the definition of h, this yields that %an_lx" + ﬁan_gaz”_l +
o4 2a12? + apgr — g(x) = b for all x € R, that is, g(z) = ta,_12" +
ﬁan_gzv"*%—- : -+%a1x2+aox—b for all x € R, and so ¢ is a polynomial
of degree n.

. This is a slightly different sort of argument, and we break it into two

pieces, corresponding to the two inequalities.

Set h(z) = x — In(xz 4+ 1), and note that h is differentiable, and hence
continuous, on (—1,00). The two cases, of —1 < z < 0 and of x > 0, are
handled in the same fashion, and we write out the details only for the
case z > 0. Apply the mean value theorem to h on any closed interval
in [0,00). Note that A(0) = 0 — In(1) = 0. If there were another point
xo > 0 at which h(zg) = 0, then by applying either Rolle’s theorem or
the mean value theorem to h on the interval [0, zo], there would exist

a point ¢ in (0,20) at which h'(c) = 0. However, h'(c) = 1 — -5, which



is non-zero for ¢ # 0. Hence, h(z) # 0 for all € (0,00). By the
intermediate value theorem, this forces either h(z) > 0 for all x > 0 or
h(z) < 0 for all z > 0 (because if there are points a and b in (0,00) at
which h(a) > 0 and h(b) < 0, then there is a point ¢ between a and b at
which h(c) = 0). Since h(1) =1 —In(2) = 0.3069... > 0, we have that
h(xz) > 0 on (0,00), that is, that x > In(x + 1) for all x > 0, as desired.
(As noted above, the argument to show that h(z) > 0 for —1 < z < 0,
or equivalently that x > In(z+1) for —1 < z < 0, is similar, and is left
for you to write out.)

T

For the other inequality, set g(z) = In(z + 1) — -%5, and note that g is
differentiable, and hence continuous, for z > —1. (As above, we give
the details in the case that x > 0, and leave the case of —1 < x < 0 to
you the reader.) Note that ¢'(z) = iz > 0 for £ > 0. In particular,
applying the mean value theorem to g on the interval [0, z¢], we see
that there is ¢ in (0, z¢) so that g(x¢) — g(0) = ¢'(c)(xo — 0) > 0, since
both ¢'(¢) > 0 and z¢ > 0. Hence, g(z¢) > ¢(0) = 0 for all x > 0. That
is, In(z +1) > 75 for all z > 0.

. Here, set g(z) = & — sin(x). We wish to show that g(x) > 0 for all
x > 0. First, note that since —1 < sin(z) < 1 for all z € R, we
have that g(z) > 0 for x > 1, and so we can restrict our attention
henceforth to 0 < x < 1. Also, note that g(x) is differentiable, and
hence continuous, on all of R, and so we may apply the mean value
theorem to g on any closed interval [0, z¢] for 0 < 25 < 1. So, there
exists some ¢ in (0, ) so that g(xg) — ¢g(0) = ¢'(¢)(zo — 0). Since
9(0) = 0 and since ¢'(c) = 1 — cos(c) > 1 for ¢ € (0,1), we have that
g(xo) > 0 for all 0 < zy < 1, and hence that g(x) > 0 for all z > 0, as
desired.



