Question

a) Show that if $f(z)$ has a pole of order 2 at $z=a$, then its residue at $z=a$ is

$$
\lim _{z \rightarrow a}\left(\frac{d}{d z}\left((z-a)^{2} f(z)\right)\right) .
$$

b) The function $f(z)$ is regular except for $z=0$ and $z=i$. Find $f(z)$ when
i) $f(z)$ has a simple pole at $z=0$,
ii) $f(z)$ has a pole of order 2 with residue 5 at $z=i$,
iii) $\lim _{z \rightarrow \infty} z f(z)=3$ and
iv) $f(-i)=0$.

Answer

a) Bookwork from the Laurent Series
b) We look for a function of the form
$f(z)=\frac{P(z)}{z(z-i)^{2}}$ using (i) and (ii).
since $\lim _{z \rightarrow \infty} z f(z)$ is finite and non zero, P is quadratic.
$\lim _{z \rightarrow \infty} \frac{z\left(\alpha z^{2}+\beta z+\gamma\right)}{z(z-i)^{2}}=3$, therefore $\alpha=3$.
The residue at $z=i$ is
$\lim _{z \rightarrow i} \frac{d}{d z} \frac{3 z^{2}+\beta z+\gamma}{z}=\lim _{z \rightarrow i} 3-\frac{\gamma}{z^{2}}=3+\gamma=5$ so $\gamma=2$
$f(-i)=0$ so $3(-i)^{2}+\beta(-i)+2=0$
$\beta(-i)-1=0$ so $\beta=i$
Thus $f(z) \frac{3 z^{2}+i z+2}{z(z-1)^{2}}$

