Question

For the following system of equations

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & 1 & -1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

(a) Write down the matrix and the augmented matrix
(b) Find the rank of both by the elimination method
(c) Use this information to determine whether the equations have a solution, and if they do how many free variables there are.
(d) If they do have a solution, find it, and confirm that indeed it has the right number of free variables.

Answer
(a) $A=\left(\begin{array}{ccc}1 & 2 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 2\end{array}\right) \quad A: b=\left(\begin{array}{cccc}1 & 2 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 1 & 2 & 0\end{array}\right)$
(b) Use elimination method to find rank

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 2 & 1 & 0 \\
1 & 1 & -1 & 0 \\
0 & 1 & 2 & 0
\end{array}\right) \rightarrow(\text { row } 2 \rightarrow \text { row } 2-\text { row } 1) \\
& \left(\begin{array}{cccc}
1 & 2 & 1 & 0 \\
0 & -1 & -2 & 0 \\
0 & 1 & 2 & 0
\end{array}\right) \rightarrow(\text { row } 3 \rightarrow \text { row } 3+\text { row } 2) \\
& \left(\begin{array}{cccc}
1 & 2 & 1 & 0 \\
0 & -1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Hence both A and $A: b$ have rank 2
(c) Hence equations do have a solution and since $r(A)=r(A: b)$

No of free parameters $=$ no of unknowns $-r(A)=3-2=1$
(d) Equations are

$$
\begin{array}{r}
x+2 y+z=0 \\
-y-2 z=0
\end{array}
$$

Let $z=C \Rightarrow y=-2 C \Rightarrow x=-2 y-z=4 C-C=3 C$ and $\mathbf{x}=\left[\begin{array}{c}3 C \\ -2 C \\ C\end{array}\right]$ with one free variable as expected.

