Question

For the following system of equations

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & 1 & -1 \\
0 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
6 \\
7 \\
3
\end{array}\right)
$$

(a) Write down the matrix and the augmented matrix
(b) Find the rank of both by the elimination method
(c) Use this information to determine whether the equations have a solution, and if they do how many free variables there are.
(d) If they do have a solution, find it, and confirm that indeed it has the right number of free variables.

Answer
(a) $A=\left(\begin{array}{ccc}1 & 2 & 1 \\ 2 & 1 & -1 \\ 1 & -1 & 0\end{array}\right) \quad A: b=\left(\begin{array}{cccc}1 & 2 & 1 & 6 \\ 2 & 1 & -1 & 7 \\ 1 & -1 & 0 & 3\end{array}\right)$
(b) Use elimination method to find rank

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 2 & 1 & 6 \\
2 & 1 & -1 & 7 \\
1 & -1 & 0 & 3
\end{array}\right) \rightarrow(\text { exchange rows } 1,2) \\
& \left(\begin{array}{cccc}
2 & 1 & -1 & 7 \\
1 & 2 & 1 & 6 \\
1 & -1 & 0 & 3
\end{array}\right) \rightarrow\left(\begin{array}{c}
\text { (row } 2 \rightarrow 2 \text { row } 2-\text { row } 1) \\
(\text { row } 3 \rightarrow 2 \text { row } 3-\text { row } 1)
\end{array}\right. \\
& \left(\begin{array}{cccc}
2 & 1 & -1 & 7 \\
0 & 3 & 3 & 5 \\
0 & -3 & 1 & -1
\end{array}\right) \rightarrow(\text { row } 3 \rightarrow \text { row } 3+\text { row } 2) \\
& \left(\begin{array}{cccc}
2 & 1 & -1 & 7 \\
0 & 3 & 3 & 5 \\
0 & 0 & 4 & 4
\end{array}\right)
\end{aligned}
$$

Hence both $r(A)=r(A: b)=3$
(c) Hence equations do have a solution and since $r(A)=r(A: b)$, no. of free parameters $=$ no of unknowns $-r(A)=3-3=0$
(d) Equations are

$$
\begin{array}{r}
2 x+y-z=7 \\
3 y+3 z=5 \\
4 z=4
\end{array}
$$

$$
\begin{aligned}
& \text { Let } z=1 \Rightarrow y=\frac{2}{3} \Rightarrow 2 x=7+z-y=7+1-\frac{2}{3}=\frac{22}{3} \Rightarrow x=\frac{11}{3} \text { and } \\
& \mathbf{x}=\left(\begin{array}{c}
\frac{11}{3} \\
\frac{2}{3} \\
1
\end{array}\right) \text { with no free variable as expected. }
\end{aligned}
$$

