Question

Suppose that $X \sim \operatorname{beta}(\alpha, \beta)$. Show that the pdf of $Y=\frac{1}{X}-1$ is

$$
g(y \mid \alpha, \beta)= \begin{cases}\frac{1}{B(\alpha, \beta)} \frac{y^{\beta-1}}{(1+y)^{\alpha+\beta}}, & \text { for } y \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

This distribution is called the beta distribution of the second type.
Answer
We have $f(x \mid \alpha, \beta) \frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1}$
The transformation $Y=\frac{1}{X}-1$ is decreasing and continuous if $x \in(0,1)$ and also $0<y<\infty$.

$$
x=\frac{1}{1+y} \Rightarrow \frac{d x}{d y}=-\frac{1}{(1+y)^{2}}
$$

Therefore the pdf of Y is

$$
\begin{aligned}
g(y) & =\frac{1}{B(\alpha, \beta)} \cdot\left(\frac{1}{1+y}\right)^{\alpha-1} \cdot\left(1-\frac{1}{1+y}\right)^{\beta-1} \cdot\left(\frac{1}{1+y}\right)^{2}, \quad 0 \leq y<\infty \\
& =\frac{1}{B(\alpha, \beta)} \cdot \frac{y^{\beta-1}}{(1+y)^{\alpha+\beta}}, \quad 0 \leq y<\infty
\end{aligned}
$$

