Question

A right-handed rectangular co-ordinate system is rotated through an angle of 120° about the line $x=y=z$, Find the matrix A of the transformation and show that $\operatorname{det} A=+1$. What is A^{3} ?

Answer

If we perform this rotation successively 3 times we get back to where we started from. So $A^{3}=I$.
The rotation permutes the axis $x_{1} x_{2} x_{3} \rightarrow x_{3} x_{1} x_{2}$ So

$$
\left(\begin{array}{l}
x_{3} \\
x_{1} \\
x_{2}
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

$\operatorname{det} A=1 \quad A^{2}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$
If the rotation is the other way $x_{1} x_{2} x_{3} \rightarrow x_{2} x_{3} x_{1}$ then $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$

