Question

Prove that multiplication of nxn matrices is associative, by verifying that the ij-th element of $(A B) C$ and $A(B C)$ have the common value

$$
\sum_{p, q=1, \cdots, n} a_{1 p} b_{p q} c_{q j} .
$$

(try with the ij notation of 2 x 2 and 3 x 3 matrices first if you are not sure what to do for nxn.)

Answer

$$
\begin{aligned}
(A B) C_{i j} & =\text { ith row of } A B \cdot \mathrm{jth} \text { column of } C \\
& =A B_{i 1} C_{1 j}+A B_{i 2} C_{2 j}+\cdots A B_{i n} C_{n j} \\
& =\sum_{q=1}^{n}(A B)_{i q} c_{q i} \\
& =\sum_{q=1}^{n}(\text { ith row of } A \cdot \text { qthcolumn of } B) c_{q j} \\
& =\sum_{q=1}^{n}\left(\sum_{p=1}^{n} a_{i p} b_{p q}\right) c_{q j} \\
& =\sum_{p, q=1}^{n} a_{i p} b_{p q} c_{q j} \\
A(B C)_{i j} & =i^{\text {ith row of } A \cdot \mathrm{jth} \text { column of } B C} \\
& =\sum_{p=1}^{n} a_{i p} B C_{p j} \\
& =\sum_{p=1}^{n} a_{i p} \sum_{q=1}^{n} b_{p q} c_{q j} \\
& =\sum_{p, q=1}^{n} a_{i p} b_{p q} c_{q j}
\end{aligned}
$$

