## QUESTION

Find all possible simultaneous solutions to the following sets of congruences, expressing your answers as congruence classes modulo some suitable integer.
(i) $x \equiv 2 \bmod 7$.
$x \equiv 7 \bmod 9$.
$x \equiv 3 \bmod 4$.
(ii) $x^{2}+2 x+2 \equiv 0 \bmod 5$.
$7 x \equiv 3 \bmod 11$.

## ANSWER

(i) 7,9 and 4 are mutually coprime, so the Chinese Remainder Theorem guarantees a solution, which is unique $\bmod 7.9 .4=252$, You may have followed the method of the Chinese Remainder Theorem, or gone for the quick method. Here are solutions for both:-

## CHINESE REMAINDER THEOREM

Here $n=7.9 .4-252, N_{1}=\frac{n}{7}=36, N_{2}=\frac{n}{9}=28$ and $N_{3}=\frac{n}{4}=63$. We must solve $36 x_{1} \equiv 1 \bmod 7,28 x_{2} \equiv 1 \bmod 9$ and $63 x_{3} \equiv 1 \bmod$ 4. These simplify to $x_{1} \equiv 1 \bmod 7, x_{2} \equiv 1 \bmod 9$ and $-x_{3} \equiv 1 \bmod$ 4 , so we may take $x_{1}=1, x_{2}=1$ and $x_{3}=3$. The Chinese Remainder Theorem then tells us that $\bar{x}=2.36 .1+7.28 .1+3.63 .3$ is a simultaneous solution. Now $\bar{x}=72+196+567=835 \equiv 79 \bmod 252$ so our solution is $x \equiv 79 \bmod 252$.

## QUICK METHOD

The Chinese Remainder Theorem guarantees a congruence class of solutions mod 252, so guarantees integer solutions bigger than any preordained size.

We start with the equation of largest modulus, $x \equiv 7 \bmod 9$, find an integer soluytion (7), then increase it by multiples of 9 until we reach a solution of the next congruence $x \equiv 2 \bmod 7$, viz. 7,16 .
16 is a common solution of $x \equiv 7 \bmod 9$ and $x \equiv 2 \bmod 7$. We increase this by multiples of 9.7 ( so that the numbers on our list are solutions to both equations), until we reach a solution of the final equation, $x \equiv 3$ $\bmod 4$, viz. 16, 79 .

Thus $x \equiv 79 \bmod 252$ simultaneously solves all three equations.
(ii) We begin by solving the congruences:

For $x^{2}+2 x+2 \equiv 0 \bmod 5$ we have not yet learnt a general method (see $\S 7$ ), but as 5 is small, we may try out all congruence classes $\bmod 5$, and pick out the solutions. The least absolute residues $\bmod 5$ are $0, \pm 1, \pm 2$, and we see that $f(0) \equiv 2 \bmod 5, f(1)=5 \equiv 0 \bmod 5, f(-1) \equiv 1 \bmod$ $5, f(2)=10 \equiv 0 \bmod 5$ and $f(-2) \equiv 2 \bmod 5$, so the solutions of the congruence are $x \equiv 1 \bmod 5$ and $x \equiv 2 \bmod 5$.
To solve $7 x \equiv 3 \bmod 11$, we could use, for example, $7 x \equiv 3 \equiv 14 \bmod$ 11 , so on division by $2, x \equiv 2 \bmod 11$.
Thus a simultaneous solution of both congruences would satisfy either $x \equiv 1 \bmod 5$ and $x \equiv 2 \bmod 11$ or $x \equiv 2 \bmod 5$ and $x \equiv 2 \bmod 11$.
The Chinese Remainder Theorem guarantees a unique solution for eac pair of equations mod 55 , so we will end up with two congruence classes $\bmod 55$ as solutions. Again we have a choice of two methods- this time I'll use the quick method:-
For $x \equiv 1 \bmod 5$ and $x \equiv 2 \bmod 22$, start with a solution $(2)$ for $x \equiv 2$ $\bmod 11$, and increase by multiples of 11 until we reach a solution of $x \equiv 1 \bmod 5$.
We get $2,13,24,35,46$, so a suitable solution is $x \equiv 46 \bmod 55$.
For $x \equiv 2 \bmod 5$ and $x \equiv 2 \bmod 11$, we immediately see (as the solution is unique $\bmod 55)$ that $x \equiv 2$ is the answer.

Thus the two congruences are solved by either $x \equiv 2$ or $x \equiv 46 \bmod$ 55.

