Question

Let \mathbf{a}, \mathbf{b} and \mathbf{r} be vectors with $\mathbf{a} \cdot \mathbf{b} \neq 0$, and let t be a scalar. Show that the equation:

$$
\mathbf{a} \times \mathbf{r}=\mathbf{a}+t \mathbf{b}
$$

can be satisfied only if

$$
t=-\frac{\mathbf{a} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{b}}
$$

Put this value of t into the equation and deduce that \mathbf{r} must have the form:

$$
\mathbf{r}=\frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot \mathbf{b}}+\left(\frac{\mathbf{a} \cdot \mathbf{r}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} .
$$

Answer

$\mathbf{a} \times \mathbf{r}=\mathbf{a}+t \mathbf{b}$
Take the dot products of both sides of $\left({ }^{*}\right)$ with a:
$(\mathbf{a} \times \mathbf{r}) \cdot \mathbf{a}=(\mathbf{a}+t \mathbf{b}) \cdot \mathbf{a}=\mathbf{a} \cdot \mathbf{a}+t \mathbf{b} \cdot \mathbf{a}$
and since $(\mathbf{a} \times \mathbf{r}) \cdot \mathbf{a}=0$ we have $0=\mathbf{a} \cdot \mathbf{a}+t \mathbf{b} \cdot \mathbf{a}$ or $\mathbf{a} \cdot \mathbf{b} t=-\mathbf{a} \cdot \mathbf{a}$
Dividing by the scalar $\mathbf{a} \cdot \mathbf{b}$ gives $t=\frac{-\mathbf{a} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{b}}$
Substitute this value of t into $\left({ }^{*}\right)$ to obtain:

$$
\mathbf{a} \times \mathbf{r}=\mathbf{a}+\left(\frac{-\mathbf{a} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{b}}\right) \mathbf{b} \quad(* *)
$$

Take the cross product of both sides of $\left({ }^{* *}\right)$ with a:

$$
\begin{aligned}
\mathbf{a} \times(\mathbf{a} \times \mathbf{r}) & =\mathbf{a} \times\left(\mathbf{a}-\left(\frac{\mathbf{a} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{b}}\right) \mathbf{b}\right) \\
& =\mathbf{a} \times \mathbf{a}-\left(\frac{\mathbf{a} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{b}}\right)(\mathbf{a} \times \mathbf{b}) \quad(\text { Distributive Property }) \\
& =-\left(\frac{\mathbf{a} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{b}}\right)(\mathbf{a} \times \mathbf{b}) \quad(\text { since } \mathbf{a} \times \mathbf{a}=0)
\end{aligned}
$$

From question 3 we have:

$$
\begin{aligned}
\mathbf{a} \times(\mathbf{a} \times \mathbf{r}) & =(\mathbf{a} \cdot \mathbf{r}) \mathbf{a}-(\mathbf{a} \cdot \mathbf{a}) \mathbf{r} \\
\text { and so }(\mathbf{a} \cdot \mathbf{r}) \mathbf{a}-(\mathbf{a} \cdot \mathbf{a}) \mathbf{r} & =-\left(\frac{\mathbf{a} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{b}}\right)(\mathbf{a} \times \mathbf{b}) . \\
\text { Rearranging gives } \mathbf{r} & =\frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot \mathbf{b}}+\left(\frac{\mathbf{a} \cdot \mathbf{r}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} \\
\text { (assume } \mathbf{a} \text { is a non }- \text { zero vector, so } \mathbf{a} \cdot \mathbf{a} & \left.=|\mathbf{a}|^{2} \neq 0\right)
\end{aligned}
$$

