Question

Let $\mathbf{a}=\mathbf{i}+\mathbf{j}+\mathbf{k}$ and $\mathbf{b}=2 \mathbf{j}-\mathbf{k}$. Find the relation that must hold between x_{1}, x_{2} and x_{3} if the vector $\mathbf{x}=x_{1} \mathbf{i}+x_{2} \mathbf{j}+x_{3} \mathbf{k}$ is to be written as

$$
\mathbf{x}=s \mathbf{a}+t \mathbf{b}
$$

where s and t are scalars. Show that the vector $\mathbf{c}=3 \mathbf{i}+\mathbf{j}+4 \mathbf{k}$ can be written as $\mathbf{c}=s \mathbf{a}+t \mathbf{b}$ and find s and t in this case.

Answer
$\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 0 & 2 & -1\end{array}\right|=\left(\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right), \mathbf{b} \times \mathbf{a}=-(\mathbf{a} \times \mathbf{b})=\left(\begin{array}{c}3 \\ -1 \\ -2\end{array}\right)$
Note that $\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=0=\mathbf{b} \cdot(\mathbf{a} \times \mathbf{b})$
Take the dot product of the equation $\mathbf{x}=s \mathbf{a}+t \mathbf{b}$ with the vector $\mathbf{a} \times \mathbf{b}$ $\mathbf{x} \cdot(\mathbf{a} \times \mathbf{b})=s \mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})+t \mathbf{b} \cdot(\mathbf{a} \times \mathbf{b})=0$
Hence the relation is: $\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \cdot\left(\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right)=0$
or $-3 x_{1}+x_{2}+2 x_{3}=0$
Note that the points which can be written as $\mathbf{x}=s \mathbf{a}+t \mathbf{b}$ all lie on a plane through the origin with equation $-3 x+y+2 z=0$. The vector $\mathbf{c}=\left(\begin{array}{l}3 \\ 1 \\ 4\end{array}\right)$ can be written in the form $\mathbf{c}=s \mathbf{a}+t \mathbf{b}$ because the components of \mathbf{c} satisfy the relation: $-3(3)+(1)+2(4)=-9+1+8=0$

$$
\mathbf{c} \times \mathbf{a}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & 1 & 4 \\
1 & 1 & 1
\end{array}\right|=\left(\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right), \mathbf{c} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & 1 & 4 \\
0 & 2 & -1
\end{array}\right|=\left(\begin{array}{c}
-9 \\
3 \\
6
\end{array}\right)
$$

To find s take the cross product of $\mathbf{c}=s \mathbf{a}+t \mathbf{b}$ with $\mathbf{b}: \mathbf{c} \times \mathbf{b}=s(\mathbf{a} \times$ b) $+t(\mathbf{b} \times \mathbf{b})=s(\mathbf{a} \times \mathbf{b})$ since $\mathbf{b} \times \mathbf{b}=0$
$\left(\begin{array}{c}-9 \\ 3 \\ 6\end{array}\right)=s\left(\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right)$ and so $s=3$
To find t take the cross product of $\mathbf{c}=s \mathbf{a}+t \mathbf{b}$ with $\mathbf{a}: \mathbf{c} \times \mathbf{a}=s(\mathbf{a} \times$ a) $+t(\mathbf{b} \times \mathbf{a})=t(\mathbf{b} \times \mathbf{a})$ since $\mathbf{a} \times \mathbf{a}=0$

$$
\left(\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right)=t\left(\begin{array}{c}
3 \\
-1 \\
-2
\end{array}\right) \text { and so } t=-1
$$

hence $\mathbf{c}=3 \mathbf{a}-\mathbf{b}$.

