Question

- a) Find the real and imaginary parts of the function $\sinh z$, where z=x+iy. Find the images of the lines x=constant and y= constant under the transformation $w=\sinh z$, identifying what kinds of curves they are.
- b) Show that the points z = 1, $z = -\frac{1}{2}$ are inverse points with respect to the circle C_1 with centre z = -1 and radius 1.

Denote the circle with centre z = +1 and radius 1 by C_2 .

Find a Mobius transformation

$$w = \frac{az+b}{cz+d}$$

which maps z = 1 to w = -1, the circle C_1 to the line $Re(w) = \frac{1}{2}$, and the circle C_2 to the line $Re(w) = -\frac{1}{2}$.

Answer

i) $\sin(x+iy) = \sinh x \cos y + i \cosh x \sin y = u + iv$

Therefore $u = \sinh x \cos y$ $v = \cosh x \sin y$

So x=constant gives parametric equations for ellipses.

y=constant gives parametric equations for hyperbolas.

b) DIAGRAM

Now $A_1B_1 = \frac{1}{2}$, $A_1A_2 = 2$, $A_10 = 1$ therefore A_2 and B_1 are inverse with respect to C_1 .

Similarly A_1 and B_2 are inverse with respect to C_2 .

 C_1 maps to L_1 so A_2, B_1 map to image points in L_1 .

 A_2 maps to A_1 so B_1 maps to w=2.

 C_2 maps to L_2 so A_1, B_2 map to image points in L_2 .

 A_1 maps to A_2 so B_2 maps to w = -2.

So we have

$$\begin{array}{ccc} z & w \\ 1 & -1 \\ -\frac{1}{2} & 2 \\ \frac{1}{2} & -2 \end{array}$$

So since czw + dw - az - b = 0, we have

$$-c - d - a - b = 0 (1)$$

$$-c + 2d + \frac{1}{2}a - b = 0 (2)$$

$$-c + 2d + \frac{1}{2}a - b = 0$$

$$-c - 2d - \frac{1}{2}a - b = 0$$
(2)
(3)

add 2 and 3, so c+b=0, then 1 and 2 give a+d=0, $2d+\frac{1}{2}a=0$ giving a=d=0. So the transformation is

$$w = -\frac{1}{z}$$