## Question

a) Evaluate the sum of the series

$$
\sum_{n=-\infty}^{\infty} \frac{1}{(2 n-1)^{2}}
$$

You should justify the steps in your method, except that you may assume without proof inequalities relating to the function $\cot \pi z$.
b) State Rouche's theorem and use it to show that all the roots of the equation

$$
z^{7}+(1-i) z^{5}+2 z^{3}-1=0
$$

lie in the annulus $\frac{1}{2} \leq|z|<2$. Find a value of $k$ smaller than 2 with the property that all the roots of the equation satisfy $|z|<k$.

## Answer

a) $S=\sum_{-\infty}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{1}{4} \sum_{n=-\infty}^{\infty} \frac{1}{\left(n-\frac{1}{2}\right)^{2}}$

The function $f(z)=\frac{\pi \cot \pi z}{\left(z-\frac{1}{2}\right)^{2}}$ has a simple pole at $z=n \in \mathbf{N}$ with residue $\frac{1}{\left(n-\frac{1}{2}\right)^{2}}$,
since $(z-n) f(z)=\frac{\pi(z-n)}{\sin \pi(z-n)} \frac{\cos \pi(z-n)}{\left(z-\frac{1}{2}\right)^{2}} \rightarrow \frac{1}{\left(n-\frac{1}{2}\right)^{2}}$ as $z \rightarrow n$.
$f(z)$ has a pole of order 2 at $z=\frac{1}{2}$. The residue is given by

$$
\begin{aligned}
& \lim _{z \rightarrow \frac{1}{2}} \frac{d}{d z}\left(\left(z-\frac{1}{2}\right)^{2} f(z)\right)=\lim _{z \rightarrow \frac{1}{2}} \frac{d}{d z} \pi \cot \pi z \\
& \quad=-\pi^{2} \csc ^{2} \frac{1}{2} \pi=-\pi^{2}
\end{aligned}
$$

Now let $C_{N}$ be the square with vertices $\pm\left(N+\frac{1}{2}\right)(1 \pm i) \quad N \geq 0$.

On $C_{N} \pi \cot \pi z$ is uniformly bounded (by $K$ ).
So $\left|\int_{C_{N}} f(z) d z\right| \leq \frac{K 8\left(N+\frac{1}{2}\right)}{N^{2}} \rightarrow 0$ as $N \rightarrow \infty$.
But $\int_{C_{N}} f(z) d z=2 \pi i\left(\sum_{-N}^{N} \frac{1}{\left(n-\frac{1}{2}\right)^{2}}-\pi^{2}\right)$
so letting $N \rightarrow \infty, \quad \sum_{n=-\infty}^{\infty} \frac{1}{\left(n-\frac{1}{2}\right)^{2}}=\pi^{2}$. Thus $S=\frac{\pi^{2}}{4}$.
b) Rouche's Theorem states that if $f(z)$ and $g(z)$ are both analytic inside and on the closed contour $C$, and if $|g(z)|<|f(z)|$ on $C$ then $f(z)$ and $f(z)+g(z)$ have the same number of zeros inside $C$
i) Let $f(z)=-1, g(z)=z^{7}+(1-i) z^{5}+2 z^{3}$, for $|z|=\frac{1}{2}|g(z)| \leq\left(\frac{1}{2}\right)^{7}+\sqrt{2}\left(\frac{1}{2}\right)^{5}+2\left(\frac{1}{2}\right)^{3}<1=|f(z)|$ $f(z)$ has no zeros inside $|z|=\frac{1}{2}$, so $f(z)+g(z)$ has none inside $|z|=\frac{1}{2}$.
ii) Let $f(z)=z^{7}, g(z)=(1-i) z^{5}+2 z^{3}-1$, for $|z|=2|g(z)| \leq \sqrt{2} 2^{5}+2^{4}+1<2^{6}+2^{4}+1=81<2^{7}=|f(z)|$ $f(z)$ has 7 zeros inside $|z|=2$, and so does $f(z)+g(z)$ therefore. For $|z|=1.6|g(z)|<\sqrt{2}(1.6)^{5}+2(1.6)^{4}+1 \approx 24.02$ $|f(z)|=(1.6)^{7} \approx 26.84$ So $a=1.6$ will do.
(This doesn't quite work with $a=1.5$ ).

