Question

a) Find the Taylor series expansion of the function $f(z)=(z+1) /(z-1)$ about the origin.
Find the Laurent expansion of $f(z)$ about the origin for $|z|>1$.
Find the Laurent expansion of $f(z)$ about $z=1$.
b) Locate the zeros and singularities of the function

$$
\frac{z^{2}\left(z^{2}-z+1\right) \exp (1 / z)}{z^{3}-13 z^{2}+5 z+7}
$$

Classify the singularities, and determine the behaviour of the function at infinity.

Answer

a) For $|z|<1, \frac{1}{1-z}=1+z+z^{2}+\cdots$

So $\frac{z+1}{z-1}=-(1+z)\left(1+z+z^{2}+\cdots\right)=-\left(1+2 z+2 z^{2}+2 z^{3}+\cdots\right)$,
this is the required Taylor expansion
For $|z|>1 \frac{z+1}{z-1}=\frac{z+1}{z\left(1-\frac{1}{z}\right)}=\left(1+\frac{1}{z}\right)\left(1+\frac{1}{z}+\frac{1}{z^{2}}+\cdots\right)$
$=1+\frac{2}{z}+\frac{2}{z^{2}}+\frac{2}{z^{3}}+\cdots$ this is the required Laurent expansion about the origin.
Now $\frac{z+1}{z-1}=\frac{z-1+2}{z-1}=1+\frac{2}{z-1}$, this is the expansion about $z=1$, having only two terms.
b) $z^{2}-z+1=0$ when $z=\frac{1 \pm i \sqrt{3}}{2}$. These are zeros of the function.
$z^{3}-13 z^{2}+5 z+7=(z-1)\left(z^{2}-12 z-7\right)=0$ when $z=1$ and $z=6 \pm \sqrt{43}$.
So the function has simple poles at $z=1$ and $z=6 \pm \sqrt{43}$.
The function has an essential singularity at $z=0$.

To investigate the behaviour at infinity, replace z by $\frac{1}{z}$ to obtain.
$\frac{\frac{1}{z^{2}}\left(\frac{1}{z^{2}}-\frac{1}{z}+1\right) \exp (z)}{\frac{1}{z^{3}}-\frac{13}{z^{2}}+\frac{5}{z}+7}=\frac{\left(1-z+z^{2}\right) e^{z}}{z\left(1-13 z+5 z^{2}+7 z^{3}\right)}$
This has a simple pole at $z=0$, so the original function has a simple pole at infinity.

