Question

a) Find the Taylor series expansion of the function f(z) = (z+1)/(z-1)about the origin.

Find the Laurent expansion of f(z) about the origin for |z| > 1. Find the Laurent expansion of f(z) about z = 1.

b) Locate the zeros and singularities of the function

$$\frac{z^2(z^2-z+1)\exp(1/z)}{z^3-13z^2+5z+7}$$

Classify the singularities, and determine the behaviour of the function at infinity.

Answer

a) For |z| < 1, $\frac{1}{1-z} = 1 + z + z^2 + \cdots$

So
$$\frac{z+1}{z-1} = -(1+z)(1+z+z^2+\cdots) = -(1+2z+2z^2+2z^3+\cdots),$$
 this is the required Taylor expansion

For
$$|z| > 1$$
 $\frac{z+1}{z-1} = \frac{z+1}{z\left(1-\frac{1}{z}\right)} = \left(1+\frac{1}{z}\right)\left(1+\frac{1}{z}+\frac{1}{z^2}+\cdots\right)$

 $=1+\frac{2}{z}+\frac{2}{z^2}+\frac{2}{z^3}+\cdots$ this is the required Laurent expansion

Now $\frac{z+1}{z-1} = \frac{z-1+2}{z-1} = 1 + \frac{2}{z-1}$, this is the expansion about z = 1,

b) $z^2 - z + 1 = 0$ when $z = \frac{1 \pm i\sqrt{3}}{2}$. These are zeros of the function.

$$z^3 - 13z^2 + 5z + 7 = (z - 1)(z^2 - 12z - 7) = 0$$
 when $z = 1$ and $z = 6 \pm \sqrt{43}$.

So the function has simple poles at z = 1 and $z = 6 \pm \sqrt{43}$.

The function has an essential singularity at z = 0.

To investigate the behaviour at infinity, replace z by $\frac{1}{z}$ to obtain.

$$\frac{\frac{1}{z^2} \left(\frac{1}{z^2} - \frac{1}{z} + 1\right) \exp(z)}{\frac{1}{z^3} - \frac{13}{z^2} + \frac{5}{z} + 7} = \frac{(1 - z + z^2)e^z}{z(1 - 13z + 5z^2 + 7z^3)}$$

This has a simple pole at z=0, so the original function has a simple pole at infinity.