
Question
Find the eigenvalues and eigenfunctions for the differential equation

y′′ + λy = 0

with the following boudary conditions

(a) y(0) = 0, y′(1) = 0

(b) y′(0) = 0, y(1) = 0

(c) y′(0) = 0, y′(1) = 0

(d) y′(0) = 0, y′(1) + y(1) = 0

Answer

(a)
y′′ + λy = 0 (∗)

There are three different cases to consider; λ < 0, λ = 0 and λ > 0.
We consider them each in turn.

(i) λ < 0. In this case we let λ = −k2, (where k 6= 0) and equation (*)
becomes

y′′ − k2y = 0, ⇒ y = A cosh(kx) +B sinh(kx).

Using the boundary condition y(0) = 0,⇒ A = 0, so

y = B sinh(kx).

Differentiating gives y′ = kB cosh(kx) and hence y′(1) = 0 gives

kB cosh k = 0 ⇒ B = 0 (since k 6= 0).

So there is no non-trivial solution if λ < 0.

(ii) λ = 0. In this case the equation becomes y′′ = 0,⇒ y = A+Bx.

The boundary condition y(0) = 0 ⇒ A = 0, and the boundary con-
dition y′(1) = 0,⇒ B = 0. So there is no non-trivial solution for
λ = 0.

(iii) λ > 0. In this case we let λ = k2 (where k 6= 0) and equation (*)
becomes

y′′ + k2y = 0, ⇒ y = A cos(kx) +B sin(kx).
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The boundary condition y(0) = 0 gives A = 0, so that y = B sin(kx).

Hence y′ = Bk cos(kx) and the boundary condition y′(1) = 0 gives
Bk cos k = 0.

For non-trivial solutions we require cos k = 0 and hence

k =
(2n− 1)π

2
, n = 1, 2, 3, . . ..

The corresponding eigenvalues and eigenfunctions are

λn =
(2n− 1)2π2

4
, yn = sin

[

(2n− 1)πx

2

]

, n = 1, 2, 3, . . ..

(b) As in part (a) there are no non-trivial solutions unless λ > 0. We write
λ = k2 (with k 6= 0) and (*) becomes

y′′ + k2y = 0, with solution y = A cos(kx) + B sin(kx), and derivative
y′ = −Ak sin(kx) +Bk cos(kx).

Using the boundary condition y′(0) = 0 gives B = 0 and hence y =
A cos(kx).

Using the boundary condition y(1) = 0 gives A cos k = 0 so for non-
trivial solutions we require:

cos k = 0, ⇒ k =
(2n− 1)π

2
, n = 1, 2, 3, . . .

The corresponding eigenvalues and eigenfunctions are

λn =
(2n− 1)2π2

4
, yn = sin

[

(2n− 1)πx

2

]

, n = 1, 2, 3, . . ..

(c) There are no non-trivial solutions when λ < 0, however in this case there
are non-trivial solution when λ = 0 or λ > 0.

When λ = 0 the equation becomes y′′ = 0 with solution y = A+Bx.

Hence y′ = B and the boundary condition y′(0) = 0 requires B = 0.
However with this condition the other boundary condition y ′(1) = 0
is automatically satisfied and hence y = A satisfies the DE and the
boundary conditions.

Hence λ0 = 0 is an eigenvalue with y0 = 1 the corresponding eigen-
function.

For λ > 0 the solution is as usual y = A cos(kx) + B sin(kx), with
derivative y′ = −Ak sin(kx) +Bk cos(kx).

The boundary condition y′(0) = 0 gives B = 0 and hence
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y′ = −Ak sin(kx)

The other boundary condition y′(1) = 0 now gives −Ak sin k = 0 so for
non-trivial solutions we require:

sin k = 0, ⇒ k = nπ, n = 1, 2, 3, . . . .

The corresponding eigenvalues and eigenfunctions are

λn = n2π2, yn = cos(nπ) n = 1, 2, 3, . . ..

Note that if we allow n = 0 this includes the case of the zero eigenvalue.

(d) As in part (a) there are no non-trivial solutions unless λ > 0. We write
λ = k2 (with k 6= 0) and (*) becomes

y′′ + k2y = 0, with solution y = A cos(kx) + B sin(kx), and derivative
y′ = −Ak sin(kx) +Bk cos(kx).

The boundary condition y′(0) = 0 gives B = 0 so y = A cos(kx) and
y′ = −Ak sin(kx).

Applying the second boundary condition y(1) + y′(1) = 0 gives cos k−
k sin k = 0 which implies k = cot k.

By drawing the graphs of y = cot x and y = x we see that k = cot k
has an infinite number of positive roots; k1, k2, k3, . . ..

The corresponding eigenvalues and eigenfunctions are

λn = k2

n
, yn = cos(knπ) n = 1, 2, 3, . . ..

Where kn is the n-th positive root of x = cot x.

Note this eigenvalue problem arises in a problem in quantum mechanics.
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