Question

Find the eigenvalues and eigenfunctions for the differential equation

$$
y^{\prime \prime}+\lambda y=0
$$

with the following boudary conditions
(a) $y(0)=0, \quad y^{\prime}(1)=0$
(b) $y^{\prime}(0)=0, \quad y(1)=0$
(c) $y^{\prime}(0)=0, \quad y^{\prime}(1)=0$
(d) $y^{\prime}(0)=0, \quad y^{\prime}(1)+y(1)=0$

Answer

(a)

$$
\begin{equation*}
y^{\prime \prime}+\lambda y=0 \tag{*}
\end{equation*}
$$

There are three different cases to consider; $\lambda<0, \lambda=0$ and $\lambda>0$. We consider them each in turn.
(i) $\lambda<0$. In this case we let $\lambda=-k^{2}$, (where $\left.k \neq 0\right)$ and equation (*) becomes
$y^{\prime \prime}-k^{2} y=0, \quad \Rightarrow \quad y=A \cosh (k x)+B \sinh (k x)$.
Using the boundary condition $y(0)=0, \Rightarrow A=0$, so
$y=B \sinh (k x)$.
Differentiating gives $y^{\prime}=k B \cosh (k x)$ and hence $y^{\prime}(1)=0$ gives
$k B \cosh k=0 \Rightarrow B=0($ since $k \neq 0)$.
So there is no non-trivial solution if $\lambda<0$.
(ii) $\lambda=0$. In this case the equation becomes $y^{\prime \prime}=0, \Rightarrow y=A+B x$.

The boundary condition $y(0)=0 \Rightarrow A=0$, and the boundary condition $y^{\prime}(1)=0, \Rightarrow B=0$. So there is no non-trivial solution for $\lambda=0$.
(iii) $\lambda>0$. In this case we let $\lambda=k^{2}($ where $k \neq 0)$ and equation $\left(^{*}\right)$ becomes

$$
y^{\prime \prime}+k^{2} y=0, \quad \Rightarrow \quad y=A \cos (k x)+B \sin (k x)
$$

The boundary condition $y(0)=0$ gives $A=0$, so that $y=B \sin (k x)$.
Hence $y^{\prime}=B k \cos (k x)$ and the boundary condition $y^{\prime}(1)=0$ gives $B k \cos k=0$.

For non-trivial solutions we require $\cos k=0$ and hence
$k=\frac{(2 n-1) \pi}{2}, \quad n=1,2,3, \ldots$.
The corresponding eigenvalues and eigenfunctions are
$\lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{4}, \quad y_{n}=\sin \left[\frac{(2 n-1) \pi x}{2}\right], \quad n=1,2,3, \ldots$.
(b) As in part (a) there are no non-trivial solutions unless $\lambda>0$. We write $\lambda=k^{2}($ with $k \neq 0)$ and $(*)$ becomes
$y^{\prime \prime}+k^{2} y=0$, with solution $y=A \cos (k x)+B \sin (k x)$, and derivative $y^{\prime}=-A k \sin (k x)+B k \cos (k x)$.
Using the boundary condition $y^{\prime}(0)=0$ gives $B=0$ and hence $y=$ $A \cos (k x)$.
Using the boundary condition $y(1)=0$ gives $A \cos k=0$ so for nontrivial solutions we require:
$\cos k=0, \quad \Rightarrow \quad k=\frac{(2 n-1) \pi}{2}, \quad n=1,2,3, \ldots$
The corresponding eigenvalues and eigenfunctions are
$\lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{4}, \quad y_{n}=\sin \left[\frac{(2 n-1) \pi x}{2}\right], \quad n=1,2,3, \ldots$.
(c) There are no non-trivial solutions when $\lambda<0$, however in this case there are non-trivial solution when $\lambda=0$ or $\lambda>0$.
When $\lambda=0$ the equation becomes $y^{\prime \prime}=0$ with solution $y=A+B x$.
Hence $y^{\prime}=B$ and the boundary condition $y^{\prime}(0)=0$ requires $B=0$. However with this condition the other boundary condition $y^{\prime}(1)=0$ is automatically satisfied and hence $y=A$ satisfies the DE and the boundary conditions.
Hence $\lambda_{0}=0$ is an eigenvalue with $y_{0}=1$ the corresponding eigenfunction.

For $\lambda>0$ the solution is as usual $y=A \cos (k x)+B \sin (k x)$, with derivative $y^{\prime}=-A k \sin (k x)+B k \cos (k x)$.
The boundary condition $y^{\prime}(0)=0$ gives $B=0$ and hence
$y^{\prime}=-A k \sin (k x)$
The other boundary condition $y^{\prime}(1)=0$ now gives $-A k \sin k=0$ so for non-trivial solutions we require:
$\sin k=0, \quad \Rightarrow \quad k=n \pi, n=1,2,3, \ldots$
The corresponding eigenvalues and eigenfunctions are
$\lambda_{n}=n^{2} \pi^{2}, \quad y_{n}=\cos (n \pi) \quad n=1,2,3, \ldots$.
Note that if we allow $n=0$ this includes the case of the zero eigenvalue.
(d) As in part (a) there are no non-trivial solutions unless $\lambda>0$. We write $\lambda=k^{2}$ (with $k \neq 0$) and $\left(^{*}\right)$ becomes
$y^{\prime \prime}+k^{2} y=0$, with solution $y=A \cos (k x)+B \sin (k x)$, and derivative $y^{\prime}=-A k \sin (k x)+B k \cos (k x)$.
The boundary condition $y^{\prime}(0)=0$ gives $B=0$ so $y=A \cos (k x)$ and $y^{\prime}=-A k \sin (k x)$.
Applying the second boundary condition $y(1)+y^{\prime}(1)=0$ gives $\cos k-$ $k \sin k=0$ which implies $k=\cot k$.
By drawing the graphs of $y=\cot x$ and $y=x$ we see that $k=\cot k$ has an infinite number of positive roots; $k_{1}, k_{2}, k_{3}, \ldots$.
The corresponding eigenvalues and eigenfunctions are
$\lambda_{n}=k_{n}^{2}, \quad y_{n}=\cos \left(k_{n} \pi\right) \quad n=1,2,3, \ldots$.
Where k_{n} is the n-th positive root of $x=\cot x$.
Note this eigenvalue problem arises in a problem in quantum mechanics.

