Question

Find the eigenvalues and eigenfunctions for the differential equation

$$y'' + \lambda y = 0$$

with the following boudary conditions

(a)
$$y(0) = 0$$
, $y'(1) = 0$

(b)
$$y'(0) = 0, y(1) = 0$$

(c)
$$y'(0) = 0$$
, $y'(1) = 0$

(d)
$$y'(0) = 0$$
, $y'(1) + y(1) = 0$

Answer

$$y'' + \lambda y = 0 \tag{*}$$

There are three different cases to consider; $\lambda < 0, \ \lambda = 0$ and $\lambda > 0$. We consider them each in turn.

(i) $\lambda < 0$. In this case we let $\lambda = -k^2$, (where $k \neq 0$) and equation (*) becomes

$$y'' - k^2 y = 0$$
, \Rightarrow $y = A \cosh(kx) + B \sinh(kx)$.

Using the boundary condition $y(0) = 0, \Rightarrow A = 0$, so

$$y = B \sinh(kx).$$

Differentiating gives $y' = kB \cosh(kx)$ and hence y'(1) = 0 gives

$$kB \cosh k = 0 \Rightarrow B = 0 \text{ (since } k \neq 0).$$

So there is no non-trivial solution if $\lambda < 0$.

(ii) $\lambda = 0$. In this case the equation becomes $y'' = 0, \Rightarrow y = A + Bx$.

The boundary condition $y(0) = 0 \Rightarrow A = 0$, and the boundary condition $y'(1) = 0, \Rightarrow B = 0$. So there is no non-trivial solution for $\lambda = 0$.

(iii) $\lambda > 0$. In this case we let $\lambda = k^2$ (where $k \neq 0$) and equation (*) becomes

$$y'' + k^2 y = 0$$
, \Rightarrow $y = A\cos(kx) + B\sin(kx)$.

The boundary condition y(0) = 0 gives A = 0, so that $y = B\sin(kx)$.

Hence $y' = Bk \cos(kx)$ and the boundary condition y'(1) = 0 gives $Bk \cos k = 0$.

For non-trivial solutions we require $\cos k = 0$ and hence

$$k = \frac{(2n-1)\pi}{2}, \quad n = 1, 2, 3, \dots$$

The corresponding eigenvalues and eigenfunctions are

$$\lambda_n = \frac{(2n-1)^2 \pi^2}{4}, \quad y_n = \sin\left[\frac{(2n-1)\pi x}{2}\right], \quad n = 1, 2, 3, \dots$$

(b) As in part (a) there are no non-trivial solutions unless $\lambda > 0$. We write $\lambda = k^2$ (with $k \neq 0$) and (*) becomes

 $y'' + k^2y = 0$, with solution $y = A\cos(kx) + B\sin(kx)$, and derivative $y' = -Ak\sin(kx) + Bk\cos(kx)$.

Using the boundary condition y'(0) = 0 gives B = 0 and hence $y = A\cos(kx)$.

Using the boundary condition y(1) = 0 gives $A \cos k = 0$ so for non-trivial solutions we require:

$$\cos k = 0, \quad \Rightarrow \quad k = \frac{(2n-1)\pi}{2}, \quad n = 1, 2, 3, \dots$$

The corresponding eigenvalues and eigenfunctions are

$$\lambda_n = \frac{(2n-1)^2 \pi^2}{4}, \quad y_n = \sin\left[\frac{(2n-1)\pi x}{2}\right], \quad n = 1, 2, 3, \dots$$

(c) There are no non-trivial solutions when $\lambda < 0$, however in this case there are non-trivial solution when $\lambda = 0$ or $\lambda > 0$.

When $\lambda = 0$ the equation becomes y'' = 0 with solution y = A + Bx.

Hence y' = B and the boundary condition y'(0) = 0 requires B = 0. However with this condition the other boundary condition y'(1) = 0 is automatically satisfied and hence y = A satisfies the DE and the boundary conditions.

Hence $\lambda_0 = 0$ is an eigenvalue with $y_0 = 1$ the corresponding eigenfunction.

For $\lambda > 0$ the solution is as usual $y = A\cos(kx) + B\sin(kx)$, with derivative $y' = -Ak\sin(kx) + Bk\cos(kx)$.

The boundary condition y'(0) = 0 gives B = 0 and hence

$$y' = -Ak\sin(kx)$$

The other boundary condition y'(1) = 0 now gives $-Ak \sin k = 0$ so for non-trivial solutions we require:

$$\sin k = 0, \implies k = n\pi, n = 1, 2, 3, \dots$$

The corresponding eigenvalues and eigenfunctions are

$$\lambda_n = n^2 \pi^2, \quad y_n = \cos(n\pi) \quad n = 1, 2, 3, \dots$$

Note that if we allow n = 0 this includes the case of the zero eigenvalue.

(d) As in part (a) there are no non-trivial solutions unless $\lambda > 0$. We write $\lambda = k^2$ (with $k \neq 0$) and (*) becomes

 $y'' + k^2y = 0$, with solution $y = A\cos(kx) + B\sin(kx)$, and derivative $y' = -Ak\sin(kx) + Bk\cos(kx)$.

The boundary condition y'(0) = 0 gives B = 0 so $y = A\cos(kx)$ and $y' = -Ak\sin(kx)$.

Applying the second boundary condition y(1) + y'(1) = 0 gives $\cos k - k \sin k = 0$ which implies $k = \cot k$.

By drawing the graphs of $y = \cot x$ and y = x we see that $k = \cot k$ has an infinite number of positive roots; k_1, k_2, k_3, \ldots

The corresponding eigenvalues and eigenfunctions are

$$\lambda_n = k_n^2, \quad y_n = \cos(k_n \pi) \quad n = 1, 2, 3, \dots$$

Where k_n is the *n*-th positive root of $x = \cot x$.

Note this eigenvalue problem arises in a problem in quantum mechanics.