Question
Chebyshev’s equation may be written
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where n is a positive integer. The solutions which satisfy the boundary
conditions 7,,(—1) = (—1)" and 7,,(1) = 1 are polynomials of degree n. Find
the first three Chebyshev polynomials. Prove that if m # n then
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Answer

To find the Chebyshev polynomials T,,(x) one substitutes a general polyno-
mial into the differential equation and uses the boundary conditions. We
illustrate this with Ty(x).

The general form of Ty(x) is a quadratic so that Ty(z) = ag + a1 + asz?.
Using T5(1) = 1 gives ap+ai;+as = 1. Using To(—1) = 1 gives ag—a;+as = 1.
Subtracting the equations gives a; = 0 and hence ag = 1 — as. Writing as as
a we see that Ty(z) = az? + (1 — a).

We now substitute this into Chebyshev’s equation (with n = 2) and obtain

{2a(1 — 222) + 4a2® + 4(1 —a)}(1 — 2?72 =0, = 4—2a=0. So that
a =2 and Ty(z) = 22% — 1.

Now to show orthogonality. since T}, and T}, are solutions of Chebeyshev’s
equation we have:
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Multiplying equation (1) by 7,, and equation (2) by 7),, subtracting and
integrating by parts between —1 and 1 gives:
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=0
Since the first term vanishes at 1, and the terms and the integral cancel.



