Question

Let T be a triangle with angles α, β, and $\frac{\pi}{2}$. Let a be the hyperbolic length of the side of T opposite the vertex with angle α, and let b be the hyperbolic length of the side of T opposite the vertex with angle β. Prove that $\tanh (b)=\sinh (a) \tan (\beta)$, that $\sinh (b)=\sinh (c) \sin (\beta)$, and that $\tanh (a)=\tanh (c) \cos (\beta)$.

Answer

- 듸 $\frac{\sinh (a)}{\sin (\alpha)}=\frac{\sinh (b)}{\sin (\beta)}$
$\underline{\text { lcII }} \cos (\beta)=-\cos (\alpha) \cos \left(\frac{\pi}{2}\right)+\sin (\alpha) \sin \left(\frac{\pi}{2}\right) \cosh (b)$
from ls: $\sinh (b)=\frac{\sinh (a) \sin (\beta)}{\sin (\alpha)}$
use lcII: $\sinh (b)=\frac{\sinh (a) \sin (\beta)}{\cos (\beta) / \cosh (b)}=\sinh (a) \cosh (b) \tan (\beta)$
So $\tanh (b)=\sinh (a) \tan (\beta)$ as desired. (\star)
- $\sinh (b)=\sinh (c) \sin (\beta)=\frac{\sinh (c)}{\sin (\beta)} \sin (\beta)\left(\right.$ with $\left.\gamma=\frac{\pi}{2}\right)$ immediately from ls.
- from above $(\star): \tanh (b)=\sinh (a) \tan (\beta)$
from ls and lcII:
$\cosh (c)=\cot (\alpha) \cot (\beta)$
(with $\gamma=\frac{\pi}{2}$ and using
$\cos (\gamma)=-\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta) \cosh (c))$
$\sinh (c)=\frac{\sinh (a)}{\sinh (\alpha)}$

$$
\begin{aligned}
\tanh (c) & =\frac{\sinh (a)}{\sin (\alpha)} \cdot \tan (\alpha) \tan (\beta) \\
& =\sinh (a) \cdot \tan (\beta) \cdot \frac{1}{\cos (\alpha)}
\end{aligned}
$$

and so

$$
\begin{aligned}
\tanh (c) \cos (\alpha) & =\sinh (a) \tanh (\beta) \\
& =\tanh (b)
\end{aligned}
$$

$($ from $(\star))($ as desired)

