Question

Let T be a triangle with angles α , β , and $\frac{\pi}{2}$. Let a be the hyperbolic length of the side of T opposite the vertex with angle α , and let b be the hyperbolic length of the side of T opposite the vertex with angle β . Prove that $\tanh(b) = \sinh(a) \tan(\beta)$, that $\sinh(b) = \sinh(c) \sin(\beta)$, and that $\tanh(a) = \tanh(c) \cos(\beta)$.

Answer

•
$$\underline{\operatorname{ls}} \frac{\sinh(a)}{\sin(\alpha)} = \frac{\sinh(b)}{\sin(\beta)}$$
 $\underline{\operatorname{lcII}} \cos(\beta) = -\cos(\alpha)\cos(\frac{\pi}{2}) + \sin(\alpha)\sin(\frac{\pi}{2})\cosh(b)$
 $\underline{\operatorname{from ls:}} \sinh(b) = \frac{\sinh(a)\sin(\beta)}{\sin(\alpha)}$
 $\underline{\operatorname{use lcII:}} \sinh(b) = \frac{\sinh(a)\sin(\beta)}{\cos(\beta)/\cosh(b)} = \sinh(a)\cosh(b)\tan(\beta)$

So $\tanh(b) = \sinh(a)\tan(\beta)$ as desired. (\star)

- $\sinh(b) = \sinh(c)\sin(\beta) = \frac{\sinh(c)}{\sin(\beta)}\sin(\beta)$ (with $\gamma = \frac{\pi}{2}$) immediately from ls.
- from above (*): $\tanh(b) = \sinh(a) \tan(\beta)$ from ls and lcII: $\cosh(c) = \cot(\alpha) \cot(\beta)$ (with $\gamma = \frac{\pi}{2}$ and using $\cos(\gamma) = -\cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta) \cosh(c)$) $\sinh(c) = \frac{\sinh(a)}{\sinh(\alpha)}$

$$\tanh(c) = \frac{\sinh(a)}{\sin(\alpha)} \cdot \tan(\alpha) \tan(\beta)$$
$$= \sinh(a) \cdot \tan(\beta) \cdot \frac{1}{\cos(\alpha)}$$

and so

$$\tanh(c)\cos(\alpha) = \sinh(a)\tanh(\beta)$$
$$= \tanh(b)$$

(from (\star)) (as desired)