QUESTION

Prove
(a) using the factorial definition,
(b) using the word definition
(i) $\binom{n}{n-r}=\binom{n}{r}$
(ii) $\binom{n+1}{r}=\binom{n}{r}+\binom{n}{r-1}$

ANSWER
(i) (a) $\binom{n}{n-r}=\frac{n!}{(n-r)!(n-(n-r))!}=\frac{n!}{(n-r)!r!}=\binom{n}{r}$
(b) $\binom{n}{r}$ is the number of ways of choosing r from n, each choice of r is effectively one different choice of $n-r$ because $n-r$ are left behind.
(ii) (a)

$$
\begin{aligned}
\binom{n}{r}+\binom{n}{r-1} & =\frac{n!}{(n-r)!r!}+\frac{n!}{(n-r+1)!(r-1)!} \\
& =\frac{n!}{(n-r+1)!r!}\{n-r+1+r\} \\
& =\frac{(n+1)!}{(n+1-r)!r!}=\binom{n+1}{r}
\end{aligned}
$$

(b) Consider $n+1$ things. $\underbrace{x \times \times \times \ldots \times}_{n} \underbrace{\mathrm{O}}_{1}$

Choosing r from $n+1$ is $\binom{n+1}{r}$. Each choice either included O in which case you need to choose $r-1$ from $n,\binom{n}{r-1}$, or excludes O , in which case we need to choose r from $n,\binom{n}{r}$. Hence

$$
\binom{n+1}{r}=\binom{n}{r}\binom{n}{r-1}
$$

