QUESTION

An electronic system receives signals as input and sends out appropriate coded messages as output.
The system consists of 3 converters C_{1}, C_{2} and $C_{3}, 2$ monitors M_{1} and M_{2} and a perfectly reliable three way switch for connecting the input to the converters. The incoming signal is changed into a code by one of the converters and the monitors check whether the conversion is correct
Initially the signal is fed into C_{1}. If M_{1} passes the conversion the coded message is sent out. If $M_{!}$rejects the conversion the input is switched to C_{2} and the conversion is checked by M_{2}. If M_{2} passes the conversion, the coded message is sent out. If M_{2} rejects the conversion, the input is switched to C_{3} and the coded message is sent out without any further checks.
Each of the converters has probability 0.9 of correctly coding the incoming message. Each of the monitors has probability 0.8 of rejecting a wrongly coded message and also probability 0.8 of passing a correctly coded message. Draw a probability tree and hence show that the probability of a correct output from the system is about 0.968 .

$M_{1 \times} \quad M_{1}$ monitor incorrect
$M_{1 \sqrt{ }} \quad M_{1}$ monitor correct
$C_{1 \times} \quad C_{1}$ converter incorrect $C_{1 \sqrt{ }} \quad C_{1}$ converter correct

P correct
A $0.9 \times 0.8=0.72$
B $0.9^{2} \times 0.2 \times 0.8=0.1296$
C $0.9 \times 0.1 \times 0.8^{2}=0.0576$
D $0.93 \times 0.2^{2}=0.02916$
E $\quad 0.9^{2} \times 0.2 \times 0.1 \times 0.8=0.01296$
F $\quad 0.1 \times 0.8 \times 0.9^{2} \times 0.2=0.1296$
G $\quad 0.1^{2} \times 0.8^{2} \times 0.9=0.00576$
Total $=0.96804 \approx 0.968$

\square incorrect outcome P incorrect
$\overline{\mathrm{A}} \quad 0.1 \times 0.2=0.02$
$\overline{\mathrm{B}} \quad 0.9 \times 0.2^{2} \times 0.1=0.0036$
$\overline{\mathrm{C}} \quad 0.1^{2} \times 0.8 \times 0.2=0.0016$
$\overline{\mathrm{D}} \quad 0.92 \times 0.1 \times 0.2^{2}=0.00324$
$\overline{\mathrm{E}} \quad 0.9 \times 0.2 \times 0.12 \times 0.8=0.00144$
$\overline{\mathrm{F}} \quad 0.12 \times 0.8 \times 0.9 \times 0.2=0.00144$
$\overline{\mathrm{G}} \quad 0.1^{3} \times 0.8^{2}=0.00064$
Total as check $=0.03196$

