Question

The minimum value property states that, if f is continuous on $[a, b]$, then f achieves its minimum on $[a, b]$; that is, there exists some y_{0} in $[a, b]$ so that $f\left(y_{0}\right) \leq f(x)$ for all $x \in[a, b]$. Prove that a continuous function $f:[a, b] \rightarrow$ \mathbf{R} satisfies the minimum value property if it satisfies the maximum value property.
Answer
Since f is continuous on $[a, b]$, so is $g(x)=-f(x)$. Since g is continuous on the closed interval $[a, b]$, the maximum value property applied to g yields that there exists some x_{0} in $[a, b]$ so that $g\left(x_{0}\right) \geq g(x)$ for all x in $[a, b]$. Hence, $-f\left(x_{0}\right) \geq-f(x)$ for all x in $[a, b]$, and so $f\left(x_{0}\right) \leq f(x)$ for all x in $[a, b]$. That is, f satisfies the minimum value property.

