
Question

Prove, using the definition, that each of the following functions is continuous
at all points of R.

1. hn(x) = xn, where n ∈ N;

2. g(x) = c, where c ∈ R;

3. f is a function on R which satisfies |f(x) − f(y)| ≤ c|x − y| for all x,
y ∈ R, where c > 0 is a constant.

Answer

1. To show that hn(x) is continuous at a ∈ R, we need to show that
limx→a hn(x) = hn(a). Recalling the definition of limit, this translates
to showing that for each ε > 0, there exists δ > 0 so that if |x− a| < δ,
then |hn(x)−hn(a)| < ε. Since hn(x) = xn, this is the same as showing
that for each ε > 0, there exists δ > 0 so that if |x − a| < δ, then
|xn − an| < ε. Let’s break the proof into cases.

If n = 1, then all we need to do to satisfy the definition is take δ = ε.
So, we can assume that n ≥ 2. If in addition we have that a = 0, then
by the definition of limit, we need to show that for each ε > 0, there is
δ > 0 so that if |x| < δ, then |xn| = |x|n < ε. So, taking δ = ε1/n, we
are done in this case as well.

Consider now the case that n ≥ 2 and a > 0, and factor |xn − an| to
get |xn−an| = |(x−a)(xn−1+axn−2+ · · ·+an−2x+an−1)|. Recall that
we have a great deal of choice in how we choose δ, so we may restrict
our attention to the interval |x − a| < 1
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where C = an−1 1−(3/2)n

1−(3/2)
> 0 depends on both a > 0 and n ≥ 2. So,

take δ to be the smaller of 1
C
ε and 1
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a. Then, for |x− a| < δ, we have

that |xn − an| < C|x − a| ≤ ε as desired. (The first inequality follows
from the calculation above and the fact that |x − a| < δ < 1

2
a, while

the second inequality follows from δ < 1
C
ε.)

A similar argument, with appropriate placements of absolute values,
holds for a < 0. (Note that for a given ε > 0, the choice of δ depends
on ε, on a, and on n.)

2. To show that g(x) is continuous at a ∈ R, we need to show that
limx→a g(x) = g(a). Recalling the definition of limit, this translates to
showing that for each ε > 0, there exists δ > 0 so that if |x − a| < δ,
then |g(x) − g(a)| < ε. Since g(x) = c for all x, this is the same as
showing that for each ε > 0, there exists δ > 0 so that if |x − a| < δ,
then |c− c| = 0 < ε. So, regardless of the value of ε, taking δ = 1 (or
whatever your favorite positive number happens to be today) satisfies
the definition.

3. To show that f(x) is continuous at a ∈ R, we need to show that
limx→a f(x) = f(a). Recalling the definition of limit, this translates to
showing that for each ε > 0, there exists δ > 0 so that if |x − a| < δ,
then |f(x) − f(a)| < ε. Since |f(x) − f(a)| ≤ c|x − a|, taking δ = 1

c
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satisfies the definition. (If |x − a| < δ = 1
c
ε, then |f(x) − f(a)| ≤

c|x − a| < c1
c
ε = ε, as desired.) (Functions that satisfy this condition

are often referred to as Lipschitz functions.)

2


