Question

Prove, using the definition, that each of the following functions is continuous at all points of \mathbf{R}.

1. $h_{n}(x)=x^{n}$, where $n \in \mathbf{N}$;
2. $g(x)=c$, where $c \in \mathbf{R}$;
3. f is a function on \mathbf{R} which satisfies $|f(x)-f(y)| \leq c|x-y|$ for all x, $y \in \mathbf{R}$, where $c>0$ is a constant.

Answer

1. To show that $h_{n}(x)$ is continuous at $a \in \mathbf{R}$, we need to show that $\lim _{x \rightarrow a} h_{n}(x)=h_{n}(a)$. Recalling the definition of limit, this translates to showing that for each $\varepsilon>0$, there exists $\delta>0$ so that if $|x-a|<\delta$, then $\left|h_{n}(x)-h_{n}(a)\right|<\varepsilon$. Since $h_{n}(x)=x^{n}$, this is the same as showing that for each $\varepsilon>0$, there exists $\delta>0$ so that if $|x-a|<\delta$, then $\left|x^{n}-a^{n}\right|<\varepsilon$. Let's break the proof into cases.

If $n=1$, then all we need to do to satisfy the definition is take $\delta=\varepsilon$. So, we can assume that $n \geq 2$. If in addition we have that $a=0$, then by the definition of limit, we need to show that for each $\varepsilon>0$, there is $\delta>0$ so that if $|x|<\delta$, then $\left|x^{n}\right|=|x|^{n}<\varepsilon$. So, taking $\delta=\varepsilon^{1 / n}$, we are done in this case as well.

Consider now the case that $n \geq 2$ and $a>0$, and factor $\left|x^{n}-a^{n}\right|$ to get $\left|x^{n}-a^{n}\right|=\left|(x-a)\left(x^{n-1}+a x^{n-2}+\cdots+a^{n-2} x+a^{n-1}\right)\right|$. Recall that we have a great deal of choice in how we choose δ, so we may restrict our attention to the interval $|x-a|<\frac{1}{2} a$, so that $\frac{1}{2} a<x<\frac{3}{2} a$, by requiring that $\delta<\frac{1}{2} a$ (which makes sense, since $a>0$). Calculating, we see that

$$
\begin{aligned}
\left|x^{n}-a^{n}\right| & =\left|(x-a)\left(x^{n-1}+a x^{n-2}+\cdots+a^{n-2} x+a^{n-1}\right)\right| \\
& \leq|x-a|\left(x^{n-1}+a x^{n-2}+\cdots+a^{n-2} x+a^{n-1}\right) \\
& <|x-a|\left(\left(\frac{3}{2} a\right)^{n-1}+a\left(\frac{3}{2} a\right)^{n-2}+\cdots+a^{n-2} \frac{3}{2} a+a^{n-1}\right) \\
& =|x-a| a^{n-1} \sum_{k=0}^{n-1}\left(\frac{3}{2}\right)^{k} \\
& =|x-a| a^{n-1} \frac{1-(3 / 2)^{n}}{1-(3 / 2)}=C|x-a|,
\end{aligned}
$$

where $C=a^{n-1} \frac{1-(3 / 2)^{n}}{1-(3 / 2)}>0$ depends on both $a>0$ and $n \geq 2$. So, take δ to be the smaller of $\frac{1}{C} \varepsilon$ and $\frac{1}{2} a$. Then, for $|x-a|<\delta$, we have that $\left|x^{n}-a^{n}\right|<C|x-a| \leq \varepsilon$ as desired. (The first inequality follows from the calculation above and the fact that $|x-a|<\delta<\frac{1}{2} a$, while the second inequality follows from $\delta<\frac{1}{C} \varepsilon$.)

A similar argument, with appropriate placements of absolute values, holds for $a<0$. (Note that for a given $\varepsilon>0$, the choice of δ depends on ε, on a, and on n.)
2. To show that $g(x)$ is continuous at $a \in \mathbf{R}$, we need to show that $\lim _{x \rightarrow a} g(x)=g(a)$. Recalling the definition of limit, this translates to showing that for each $\varepsilon>0$, there exists $\delta>0$ so that if $|x-a|<\delta$, then $|g(x)-g(a)|<\varepsilon$. Since $g(x)=c$ for all x, this is the same as showing that for each $\varepsilon>0$, there exists $\delta>0$ so that if $|x-a|<\delta$, then $|c-c|=0<\varepsilon$. So, regardless of the value of ε, taking $\delta=1$ (or whatever your favorite positive number happens to be today) satisfies the definition.
3. To show that $f(x)$ is continuous at $a \in \mathbf{R}$, we need to show that $\lim _{x \rightarrow a} f(x)=f(a)$. Recalling the definition of limit, this translates to showing that for each $\varepsilon>0$, there exists $\delta>0$ so that if $|x-a|<\delta$, then $|f(x)-f(a)|<\varepsilon$. Since $|f(x)-f(a)| \leq c|x-a|$, taking $\delta=\frac{1}{c} \varepsilon$ satisfies the definition. (If $|x-a|<\delta=\frac{1}{c} \varepsilon$, then $|f(x)-f(a)| \leq$ $c|x-a|<c \frac{1}{c} \varepsilon=\varepsilon$, as desired.) (Functions that satisfy this condition are often referred to as Lipschitz functions.)

