Question

Show that a function $f: \mathbf{R^n} \to R$ which is unbounded above and below cannot be represented as a monotonic limit of simple functions.

Answer

Let $\{f_n\}$ be an increasing sequence of simple monotonic functions.

Let
$$f_1 = \sum_{i=1}^n c_i X_{Ei}$$
 and let $c = \min_{i=1\cdots n} c_i$

Then for all $x \in \mathbf{R}^n$ and for all $n \in \mathbf{N}$, $F_n(x) \geq c$

Hence if f is unbounded below we cannot have $f_n \to f$ everywhere. Similarly for decreasing sequences.