Question

If a projectile is fired due east from a point on the surface of the earth at a northern latitude λ with a speed V_{0} and at an angle of inclination to the horizontal of α, show that the lateral deflection when the particle strikes the earth is

$$
d=\frac{4 V_{0}^{3}}{g} \omega \sin \lambda \sin ^{2} \alpha \cos \alpha
$$

Answer

Same set up as 2b.
Initial conditions: $\dot{y}=V_{0} \cos \alpha, \dot{z}=V_{0} \sin \alpha ; \quad x=y=z=0$.
First approximation: set $\omega=0$
$y=\left(V_{0} \cos \alpha\right) t$
$z=\left(V_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2}$
Returns to ground when $t=\frac{2 V_{0} \sin \alpha}{g}(*)$
Next approximation:
$\left.\begin{array}{rl}\ddot{x} & =2 \omega \sin \lambda V_{0} \cos \alpha \\ \ddot{y} & =-2 \omega \cos \lambda\left(V_{0} \sin \alpha-g t\right) \\ \ddot{z} & =2 \omega \cos \lambda V_{0} \cos \alpha-g\end{array}\right\}$ From N2 as in 2 b .
Thus $x=V_{0} \omega \sin \lambda \cos \alpha t^{2}$
Putting this in (*) gives $x=V_{0} \omega \sin \lambda \cos \alpha \frac{4 v_{0}^{2} \sin ^{2} \alpha}{g^{2}}$ (as required)
i.e. projectile deflected south by this amount.

