Question

If a particle is projected vertically upwards to a height h above a point on the ground at a northern latitude λ, show that it strikes the ground at a point

$$
\frac{4}{3} \omega \cos \lambda \sqrt{\frac{8 h^{3}}{g}}
$$

to the west where ω is the angular velocity of the earth (Neglect air resistance and consider only small vertical heights).

Answer

Usual coordinate system - see question 2 .
Newton's 2nd law: $m \ddot{\mathbf{r}}=m \mathbf{g}-2 m \boldsymbol{\omega} \times \mathbf{v}$
$\mathbf{v}=\dot{x} \mathbf{i}+\dot{y} \mathbf{j}+\dot{z} \mathbf{k} \quad \boldsymbol{\omega}=\omega(-\cos \lambda \mathbf{i}+\sin \lambda \mathbf{k})$

$$
\begin{aligned}
\boldsymbol{\omega} \times \mathbf{v} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\omega \cos \lambda & 0 & \omega \sin \lambda \\
\dot{x} & \dot{y} & \dot{z}
\end{array}\right| \\
& =-\omega \sin \lambda \dot{y} \mathbf{i}+\omega(\dot{x} \sin \lambda+\dot{z} \cos \lambda) \mathbf{j}+(-\omega \dot{y} \cos \lambda) \mathbf{k} \\
g & =-g \mathbf{k}
\end{aligned}
$$

Therefore putting all this into Newton's 2nd law gives:
$m(\dddot{x} \mathbf{i}+\dddot{y} \mathbf{j}+\ddot{z} \mathbf{k})=-m g \mathbf{k}-2 m \omega[-\sin \lambda \ddot{y} \mathbf{i}+(\dot{x} \sin \lambda+\dot{z} \cos \lambda) \mathbf{j}+(-\dot{y} \cos \lambda) \mathbf{k}]$ Equating components gives:

$$
\begin{aligned}
& \ddot{x}=2 \omega \dot{y} \sin \lambda \\
& \ddot{y}=-2 \omega(\dot{x} \sin \lambda+\dot{z} \cos \lambda) \\
& \ddot{z}=2 \omega \dot{y} \cos \lambda-g
\end{aligned}
$$

First approximation: put $\omega=0 \Rightarrow \ddot{x}=\ddot{y}=0 \quad \ddot{z}=-g$
Therefore $x=y=0 \quad z=U t-\frac{1}{2} g t^{2}$ where U is the initial upward speed.
The particle reaches height h when $\dot{z}=0$ therefore $t=\frac{U}{g}$. Hence

$$
h=U \frac{U}{g}-\frac{1}{2} g \frac{U^{2}}{g^{2}}=\frac{U^{2}}{2 g}
$$

The time of flight is $t=\frac{2 U}{g}$.
Next approximation: (insert first approximation in Coriolis terms).

$$
\begin{aligned}
& \ddot{x}=0 \\
& \ddot{y}=-2 \omega \cos \lambda(U-g t) \\
& \ddot{z}=-g
\end{aligned}
$$

Thus

$$
\begin{aligned}
y & =2 \omega \cos \lambda\left(\frac{1}{6} g t^{3}-\frac{1}{2} U t^{2}\right) \\
\text { when } t & =2 \frac{U}{g} \text { the particle returns to the ground } \\
& =2 \omega \cos \lambda \frac{1}{6} \frac{4 U^{2}}{g^{2}}\left(g \cdot \frac{2 U}{g}-3 U\right) \\
& =-\frac{4}{3} \omega \cos \lambda \frac{U^{3}}{g^{2}} \\
& =-\frac{4}{3} \omega \cos \lambda \frac{(2 g h)^{\frac{3}{2}}}{g^{2}} \\
& =-\frac{4}{3} \omega \cos \lambda \sqrt{\frac{8 h^{3}}{g}} \quad \text { (to the west as negative) }
\end{aligned}
$$

