QUESTION

For each pair (a, p) below, use Euler's criterion to decide whether or not the equation $x^{2} \equiv a \bmod p$ has any solutions:-
(i) $(2,5)$
(ii) $(3,13)$
(iii) $(7,31)$.

ANSWER
(i) We need to calculate $a^{\frac{(p-2)}{2}} \bmod p$, i.e. $2^{2} \bmod 5$. Now $2^{2} \equiv-1 \bmod 5$, so $x^{2} \equiv 2 \bmod 5$ has no solutions.
(ii) $a^{\frac{(p-1)}{2}} \equiv 3^{6} \equiv(-4)^{3} \equiv-4.3 \equiv-12 \equiv 1 \bmod 13$, and so the equation $x^{2} \equiv 3 \bmod 13$ has two solutions. (For interest, they are $\pm 4 \bmod 13$.)
(iii) $a^{\frac{(p-1)}{2}} \equiv 7^{15} \bmod 31$. Now $7^{2} \equiv 49 \equiv-13 \bmod 31$, so $7^{3} \equiv-91 \equiv 2$ $\bmod 31$. Thus $7^{15} \equiv 2^{5} \equiv 32 \equiv 1 \bmod 31$. Thus the equation $x^{2} \equiv 7$ $\bmod 31$ has two solutions. (Actually, $\pm 10 \bmod 31$.)

