Question

Using the matrices

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \quad B=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right) \quad C=\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

show that the matrices $\left(C^{T} B\right) A^{T}$ and $C^{T}\left(B A^{T}\right)$ exist and are equal

Answer

$$
\begin{array}{lll}
C^{T} & \text { is } & 2 \times 3 \\
B & \text { is } & 3 \times 3
\end{array} \Rightarrow C^{T} B \text { is } 3 \times 3
$$

A is $2 \times 3 \Rightarrow A^{T}$ is 3×2
Similarly $B A^{T}$ is 3×2 and C^{T} is $2 \times 3 \Rightarrow C^{T}\left(B A^{T}\right)$ is 2×2
Hence both exist

$$
\begin{gathered}
C^{T} B=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 1+5 & 3+5 \\
2 & 2+6 & 4+6
\end{array}\right)=\left(\begin{array}{lll}
1 & 6 & 8 \\
2 & 8 & 10
\end{array}\right) \\
\left(C^{T} B\right) A^{T}=\left(\begin{array}{lll}
1 & 6 & 8 \\
2 & 8 & 10
\end{array}\right)\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)=\left(\begin{array}{ll}
1+12+24 & 4+30+48 \\
2+16+30 & 8+40+60
\end{array}\right) \\
=\left(\begin{array}{cc}
37 & 82 \\
48 & 108
\end{array}\right) \\
B A^{T}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)=\left(\begin{array}{cc}
1+2 & 4+5 \\
3 & 6 \\
2+3 & 5+6
\end{array}\right)=\left(\begin{array}{cc}
3 & 9 \\
3 & 6 \\
5 & 11
\end{array}\right) \\
C^{T}\left(B A^{T}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{cc}
3 & 9 \\
3 & 6 \\
5 & 11
\end{array}\right)=\left(\begin{array}{cc}
3+9+25 & 9+18+55 \\
6+12+30 & 18+24+66
\end{array}\right) \\
=\left(\begin{array}{cc}
37 & 82 \\
48 & 108
\end{array}\right)
\end{gathered}
$$

Therefore $\left(C^{T} B\right) A^{T}=C^{T}\left(B A^{T}\right)$ as required

