Question

Find the vector equation of the line that passes through the point A with position vector $\mathbf{a}=-2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$ and is normal to both the vectors $\mathbf{b}=$ $\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{c}=-\mathbf{i}+\mathbf{j}-\mathbf{k}$.

Answer

The direction vector of the line must be normal to $\mathbf{b}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{c}=-\mathbf{i}+\mathbf{j}-\mathbf{k}$
Let the direction vector be \mathbf{d}. Thus \mathbf{d} must be parallel to either $\mathbf{b} \times \mathbf{c}$ or $\mathbf{c} \times \mathbf{b}$. Either one will do as we can just trivially alter the scalar parameter in the final vector equation of the line, if needs be.
So choose

$$
\begin{aligned}
\mathbf{d}= & \mathbf{b} \times \mathbf{c} \\
= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 3 \\
-1 & 1 & -1
\end{array}\right| \\
= & \mathbf{i}(2 \times-1)-\mathbf{i}(1 \times 3)-\mathbf{j}(1 \times-1) \\
& +\mathbf{k}(1 \times 1)+\mathbf{j}(3 \times-1)-\mathbf{k}(2 \times-1) \\
= & -2 \mathbf{i}-3 \mathbf{i}+\mathbf{j}+\mathbf{k}-3 \mathbf{j}+2 \mathbf{k} \\
= & -5 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}
\end{aligned}
$$

Thus if $\mathbf{r}=\mathbf{a}+\lambda \mathbf{d}$ where \mathbf{a} is a point on the line, we have

$$
\mathbf{r}=-2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}+\lambda(-5 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k})
$$

