Question

Determine unit vectors that are normal to both vectors \mathbf{a} and \mathbf{b} when:
(i) $\mathbf{a}=3 \mathbf{i}+5 \mathbf{j}-2 \mathbf{k} \mathbf{b}=\mathbf{i}+\mathbf{j}+\mathbf{k}$
(ii) $\mathbf{a}=-4 \mathbf{i}+2 \mathbf{k} \mathbf{b}=\mathbf{j}-3 \mathbf{k}$

Are the results unique?

Answer

First a vector normal to both \mathbf{a} and \mathbf{b} is given by $\mathbf{a} \times \mathbf{b}$. The corresponding unit vector is $\frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|}$
(i)

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b}= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & 5 & -2 \\
1 & 1 & 1
\end{array}\right| \\
= & \mathbf{i}(5 \times 1)-\mathbf{i}(1 \times-2)-\mathbf{j}(3 \times 1) \\
& +\mathbf{k}(3 \times 1)+\mathbf{j}(1 \times-2)-\mathbf{k}(1 \times 5) \\
= & 5 \mathbf{i}+2 \mathbf{i}-3 \mathbf{j}+3 \mathbf{k}-2 \mathbf{j}-5 \mathbf{k} \\
= & 7 \mathbf{i}-5 \mathbf{j}-2 \mathbf{k}
\end{aligned}
$$

Now $|\mathbf{a} \times \mathbf{b}|=\sqrt{7^{2}+(-5)^{2}+(-2)^{2}}+\sqrt{49+25+4}=\sqrt{78}$
Thus $\frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|}=\frac{7}{\sqrt{78}} \mathbf{i}-\frac{5}{\sqrt{78}} \mathbf{j}-\frac{2}{\sqrt{78}} \mathbf{k}$
(ii)

$$
\begin{aligned}
& \mathbf{a} \times \mathbf{b} \\
= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-4 & 0 & 2 \\
0 & 1 & -3
\end{array}\right| \\
= & \mathbf{i}(0 \times-3)-\mathbf{i}(1 \times 2)-\mathbf{j}(-3 \times-4) \\
& +\mathbf{k}(-4 \times 1)+\mathbf{j}(0 \times 2)-\mathbf{k}(0 \times 0) \\
= & -2 \mathbf{i}-12 \mathbf{j}-4 \mathbf{k}
\end{aligned}
$$

Now $|\mathbf{a} \times \mathbf{b}|=\sqrt{2^{2}+12^{2}+4^{2}}+\sqrt{4+144+16}=\sqrt{164}$
Thus $\frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|}=-\frac{2}{\sqrt{164}} \mathbf{i}-\frac{12}{\sqrt{164}} \mathbf{j}-\frac{4}{\sqrt{164}} \mathbf{k}$

These results are not unique, you could have the negative sign of them. Also, there are two vectors perpendicular to any pair (these vectors being $\mathbf{a} \times \mathbf{b}$ and $\mathbf{b} \times \mathbf{a}[=-\mathbf{a} \times \mathbf{b}]$).

