## Question

The equations

$$
\frac{3 x+3}{2}=\frac{-2 y+1}{7}=\frac{2 z+6}{3}
$$

determines a straight line. Express this in its equivalent parametric form and hence as a vector equation.

Answer
If $\frac{3 x+3}{2}=\frac{-2 y+1}{7}=\frac{2 z+6}{3}$ we form the parametric equation by reversing the steps of Q5:
$\frac{\stackrel{\text { so set }}{3 x+3}}{2}=\lambda, \frac{-2 y+1}{7}=\lambda, \frac{2 z+6}{3}=\lambda$.
$\Rightarrow\left\{x=\frac{2 \lambda-3}{3} ; y=\frac{1-7 \lambda}{2} ; z=\frac{3 \lambda-6}{2}\right\}$ parametric equations
Vector equation is again got by reversing the steps of Q5:
If $x=\frac{2 \lambda-3}{3}$
$\Rightarrow \mathbf{i}$ component of vector equation is $\frac{2 \lambda}{3}-\frac{3}{3}=\frac{2 \lambda}{3}-1$
If $y=\frac{1-7 \lambda}{2}$
$\Rightarrow \mathbf{j}$ component of vector equation is $\frac{1}{2}-\frac{7}{2} \lambda$
If $z=\frac{3 \lambda-6}{2}$
$\Rightarrow \mathbf{k}$ component of vector equation is $\frac{3 \lambda}{2}-3$
Thus $\mathbf{r}=\left(\frac{2 \lambda}{3}-1\right) \mathbf{i}+\left(\frac{1}{2}-\frac{7}{2} \lambda\right) \mathbf{j}+\left(\frac{3 \lambda}{2}-3\right) \mathbf{k}$
or $\mathbf{r}=-\mathbf{i}+\frac{1}{2} \mathbf{j}-3 \mathbf{k}+\lambda\left(\frac{2}{3} \mathbf{i}-\frac{7}{2} \mathbf{j}+\frac{3}{2} \mathbf{k}\right)$

