Question

Find the line of intersection between the planes $x+2 y+3 z=6$ and $x+y+z=$ 1.

Answer

$$
\left.\begin{array}{rl}
\text { (1) } x+2 y+3 z & =6 \\
\text { (2) } x+y+z & =1 \tag{2}
\end{array}\right\} \text { require line of intersection: } 2 \text { planes intersect in }
$$ a line common to both planes

PICTURE

Take the two simultaneous equations away from each other to eliminate x :
(1) - (2):
$x+2 y+3 z=6$
$\begin{array}{r}x+y+z=1 \\ \hline y+2 z=5\end{array}$
Thus the planes intersect along $y=2 z+5$ or $y=-2 z+5$.
But this doesn't tell us about the x dependence.
Thus we have to do another elimination, say of y by $2 \times(2)-(1)$
$2 x+2 y+2 z=2$
$x+2 y+3 z=6$
$x-z=-4$
Hence we have that

$$
\begin{aligned}
y+2 z & =5 \\
x-z & =-4
\end{aligned}
$$

Thus $x+4=z$ from (4)
and $-\left(\frac{y+5}{2}\right)=z$ from (3)
Remember a straight line in $3-D$ is given by

$$
\frac{x-\alpha_{1}}{\beta_{1}}=\frac{y-\alpha_{2}}{\beta_{2}}=\frac{z-\alpha_{3}}{\beta_{3}}
$$

for given α_{i}, β_{i}
Thus we combine the above two equalities to get

$$
x+4=-\left(\frac{y+5}{2}\right)=z
$$

as the equation of intersection.

Note that from questions above, we can write this in vector form:
$x+4=\lambda ;-\left(\frac{y+5}{2}\right)=\lambda ; z=-\lambda$
$\Rightarrow x=\lambda-4 ; y=-5-2 \lambda ; z=\lambda$ parametric equation
$\Rightarrow \mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}=(\lambda-4) \mathbf{i}+(-5-2 \lambda) \mathbf{j}+\lambda \mathbf{k}$
$\Rightarrow \mathbf{r}=-4 \mathbf{i}-5 \mathbf{j}+\lambda(\mathbf{i}-2 \mathbf{j}+\mathbf{k})$

