Question

Find the distance of the point $(1,1,1)$ from the plane $x+2 y+3 z=6$. Write down the vector equation of the plane.
Answer

Let $\mathbf{O P}$ be $\mathbf{i}, \mathbf{j}, \mathbf{k}$ and $\mathbf{P Q}$ be the perpendicular distance from P to the plane.
We require $|\mathbf{P Q}|$.
$\mathbf{P Q}$ is in the direction of \mathbf{n} the normal to the plane, by definition.
Now the equation of the plane is

$$
x+2 y+3 z=6
$$

which can be rewritten as

$$
(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) \cdot(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})=6
$$

\mathbf{n} is thus

$$
\begin{aligned}
\frac{(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})}{|(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})|} & =\frac{(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})}{\sqrt{1+4+9}} \\
& =\frac{1}{\sqrt{14}} \mathbf{i}+\frac{2}{\sqrt{14}} \mathbf{j}+\frac{3}{\sqrt{14}} \mathbf{k}
\end{aligned}
$$

Thus $\mathbf{r} \cdot\left(\frac{1}{\sqrt{14}} \mathbf{i}+\frac{2}{\sqrt{14}} \mathbf{j}+\frac{3}{\sqrt{14}} \mathbf{k}\right)=\frac{6}{\sqrt{14}}$
A vector equation of the plane.
This, $\left(\frac{6}{\sqrt{14}}\right)$, is the perpendicular distance of 0 from the plane $d=|\mathbf{O R}|$.
Clearly $|\mathbf{P Q}|=|\mathbf{O R}|-|\mathbf{O P}| \cos \theta$
What is $|\mathbf{O P}| \cos \theta$?

$$
|\mathbf{O P}| \cdot \hat{\mathbf{n}}=|\mathbf{O P}||\hat{\mathbf{n}}| \cos \theta=|\mathbf{O P}| \cos \theta
$$

Thus

$$
\begin{aligned}
|\mathrm{PQ}| & =|\mathbf{O R}|-\mathbf{O P} \cdot \hat{\mathbf{n}} \\
& =d-(\mathbf{O P} \cdot \hat{\mathbf{n}}) \\
& =\frac{6}{\sqrt{14}}-(\mathbf{i}+\mathbf{j}+\mathbf{k}) \cdot\left(\frac{1}{\sqrt{14}} \mathbf{i}+\frac{2}{\sqrt{14}} \mathbf{j}+\frac{3}{\sqrt{14}} \mathbf{k}\right) \\
& =\frac{6}{\sqrt{14}}-\left(\frac{1}{\sqrt{14}} \mathbf{i}+\frac{2}{\sqrt{14}} \mathbf{j}+\frac{3}{\sqrt{14}} \mathbf{k}\right) \\
& =\underline{0}!!!
\end{aligned}
$$

Thus it looks like $(1,1,1)$ is in the plane. Ooops it is!
Since if

$$
\begin{array}{r}
x+2 y+3 z=6 \\
\Rightarrow 1+2+3=6 \\
\Rightarrow 6=6
\end{array}
$$

(if $(x, y, z)=(1,1,1))$
Thus the distance of the point $(1,1,1)$ from the plane is 0 , since it lies in it!!!

