Question

Find the Cartesian and vector equations of the plane passing through the points $(1,1,1),(1,2,3)$ and $(3,2,1)$.
Answer
Let

$$
\begin{aligned}
& \mathbf{O A}=(1,1,1)=\mathbf{i}+\mathbf{j}+\mathbf{k} \\
& \mathbf{O B}=(1,2,3)=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k} \\
& \mathbf{O C}=(3,2,1)=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}
\end{aligned}
$$

Need two vectors in the plane, say $\mathbf{A B}, \mathbf{B C}$
$\mathbf{A B}=\mathbf{A O}+\mathbf{O B}=-\mathbf{i}-\mathbf{j}-\mathbf{k}+\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}=\mathbf{j}+2 \mathbf{k}$
$\mathbf{B C}=\mathbf{B O}+\mathbf{O C}=-\mathbf{i}-2 \mathbf{j}-3 \mathbf{k}+3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}=2 \mathbf{i}-2 \mathbf{k}$
A vector to a point in the plane is $\mathbf{O A}=\mathbf{i}+\mathbf{j}+\mathbf{k}$
Thus a vector equation is

$$
\begin{aligned}
\mathbf{r} & =\mathbf{O A}+\lambda(\mathbf{A B})+\mu(\mathbf{B C}) \\
\Rightarrow & =\mathbf{i}+\mathbf{j}+\mathbf{k}+\lambda(\mathbf{j}+2 \mathbf{k})+\mu(2 \mathbf{i}-2 \mathbf{k})
\end{aligned}
$$

We now need $\hat{\mathbf{n}}$ a vector normal to plane $A B C$

$$
\hat{\mathbf{n}}=\frac{\mathrm{AB} \times \mathrm{BC}}{|\mathrm{AB} \times \mathrm{BC}|}
$$

$$
\begin{aligned}
& \mathbf{A B} \times \mathbf{B C} \\
= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 1 & 2 \\
2 & 0 & -2
\end{array}\right| \\
= & \mathbf{i}(1 \times-2)-\mathbf{i}(0 \times 2)-\mathbf{j}(0 \times-2) \\
& +\mathbf{k}(0 \times 0)+\mathbf{j}(2 \times 2)-\mathbf{k}(2 \times 1) \\
= & -2 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}
\end{aligned}
$$

$|\mathbf{A B} \times \mathbf{B C}|=\sqrt{(-2)^{2}+4^{2}+(-2)^{2}}=\sqrt{4+16+4}=\sqrt{24}$
so $\hat{\mathbf{n}}=-\frac{2}{\sqrt{24}} \mathbf{i}+\frac{4}{\sqrt{24}} \mathbf{j}-\frac{2}{\sqrt{24}} \mathbf{k}=-\frac{\mathbf{i}}{\sqrt{6}}+2 \frac{\mathbf{j}}{\sqrt{6}}-\frac{\mathbf{k}}{\sqrt{6}}$
The perpendicular distance d from 0 to the plane is $d=\mathbf{r} \cdot \hat{\mathbf{n}}$ where \mathbf{r} is the position vector of any point in the plane, say $\mathbf{O A}=\mathbf{i}+\mathbf{j}+\mathbf{k}$. Thus

$$
d=(\mathbf{i}+\mathbf{j}+\mathbf{k}) \cdot\left(-\frac{\mathbf{i}}{\sqrt{6}}+2 \frac{\mathbf{j}}{\sqrt{6}}-\frac{\mathbf{k}}{\sqrt{6}}\right)=-\frac{1}{\sqrt{6}}+2 \frac{2}{\sqrt{6}}-\frac{1}{\sqrt{6}}=\underline{0}
$$

Thus the plane actually passes through the origin!
Thus we have for a general point $(x, y, z)=\mathbf{r}$,
$(x, y, z) \cdot\left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right)=0$
$\Rightarrow-x+2 y-z=0$
orx $-2 y+x=0$

