## Question

Find the Cartesian and vector equations of the plane cutting the $x$ axis at $(1,0,0)$, the $y$ axis at $(0,2,0)$ and the $z$ axis at $(0,0,3)$.

Answer


Let

$$
\begin{aligned}
& \mathbf{O A}=(1,0,0)=\mathbf{i} \\
& \mathbf{O B}=(0,2,0)=2 \mathbf{j} \\
& \mathbf{O C}=(0,0,3)=3 \mathbf{k}
\end{aligned}
$$

So two vectors in the plane are, e.g.,

## AB and $\mathbf{B C}$

$\mathrm{AB}=\mathbf{A O}+\mathbf{O B}=-\mathbf{i}+2 \mathbf{j}$
$\mathbf{B C}=\mathbf{B O}+\mathbf{O C}=-2 \mathbf{j}+3 \mathbf{k}$
A vector to a point in the plane is $\mathbf{O A}=\mathbf{i}$.
Thus a vector equation is

$$
\begin{aligned}
\mathbf{r} & =\mathbf{O A}+\lambda(\mathbf{A B})+\mu(\mathbf{B C}) \\
& =\mathbf{i}+\lambda(-\mathbf{i}+2 \mathbf{j})+\mu(-2 \mathbf{j}+3 \mathbf{k})
\end{aligned}
$$

Cartesian equation is derived as in Q11.
Let unit vector normal to plane $A B C$ be $\hat{\mathbf{n}}$.

$$
\hat{\mathbf{n}}=\frac{\mathrm{AB} \times \mathrm{BC}}{|\mathrm{AB} \times \mathrm{BC}|}
$$

$$
\begin{aligned}
& \mathbf{A B} \times \mathbf{B C} \\
= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 2 & 0 \\
0 & -2 & 3
\end{array}\right| \\
= & \mathbf{i}(2 \times 3)-\mathbf{i}(-2 \times 0)-\mathbf{j}(-1 \times 3) \\
= & +\mathbf{k}(-1 \times-2)+\mathbf{j}(0 \times 0)-\mathbf{k}(0 \times 2) \\
= & \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}
\end{aligned}
$$

$|\mathbf{A B} \times \mathbf{B C}|=\sqrt{6^{2}+3^{2}+2^{2}}=\sqrt{36+9+4}=\sqrt{49}=7$
so $\hat{\mathbf{n}}=\frac{6}{7} \mathbf{i}+\frac{3}{7} \mathbf{j}+\frac{2}{7} \mathbf{k}$
We now need the perpendicular distance, $d$, from 0 to the plane. This is given by $d=\mathbf{r} \cdot \hat{\mathbf{n}}$ where $\mathbf{r}$ is the position vector if any point in the plane; say $\mathbf{O A}=\mathbf{i}$
Thus $d=\mathbf{i} \cdot\left(\frac{6}{7} \mathbf{i}+\frac{3}{7} \mathbf{j}+\frac{2}{7} \mathbf{k}\right)=\frac{6}{7}$

$$
(x, y, z) \cdot \hat{\mathbf{n}}=d
$$

Thus we have that so $(x, y, z) \cdot\left(\frac{6}{7} \mathbf{i}+\frac{3}{7} \mathbf{j}+\frac{2}{7} \mathbf{k}\right)=\frac{6}{7}$

$$
\Rightarrow \quad 6 x+3 y+2 z=6
$$

