Question

Which of the following pairs of vector are parallel and which are anti-parallel?

(i)
$$a = i - 3j + k b = -4i + 12j - 4k$$

(ii)
$$a = -2i + 3j - k b = 2i - 3j + k$$

(iii)
$$a = 4i - j - 3k b = 8i - 2j - 6k$$

(iv)
$$a = i + 7j + k b = 3i + 21j + 3k$$

Answer

Can be written as $\lambda \mathbf{a}$ where λ is a scalar. If so, then if $\lambda > 0$ the vectors are parallel. If so but $\lambda < 0$ then they're anti-parallel. If <u>not</u> then they're not parallel.

(i)
$$\mathbf{a} = \mathbf{i} - 3\mathbf{j} + \mathbf{k}$$
, $\mathbf{b} = -4\mathbf{i} + 12\mathbf{j} - 4\mathbf{k} = -4(\mathbf{j} - 3\mathbf{k} + \mathbf{j}) \Rightarrow \lambda = -4 \Rightarrow$ anti-parallel.

(ii)
$$\mathbf{a} = -(2\mathbf{i} - 3\mathbf{j} + \mathbf{k}) = -\mathbf{b} \Rightarrow \text{anti-parallel}.$$

(iii)
$$\mathbf{b} = 8\mathbf{i} - 2\mathbf{j} - 6\mathbf{k} = 2(4\mathbf{i} - \mathbf{j} - 3\mathbf{k}) = 2\mathbf{a} \Rightarrow \text{parallel}$$

(iv)
$$\mathbf{a} = \mathbf{i} + 7\mathbf{j} + \mathbf{k}$$
, $\mathbf{b} = 3\mathbf{i} + 21\mathbf{j} + 3\mathbf{k} = 3(\mathbf{j} + 7\mathbf{j} + \mathbf{k}) = 3\mathbf{a} \Rightarrow \text{parallel}$