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MA101 Calculus - Outline Notes: Taylor Polynomials 

This family of polynomial approximations were first investigated by the English mathematician Brook Taylor (1685-1731) and by the Scottish mathematicians Colin Maclaurin (1698-1756) and James Gregory (1638-1675)

We shall start by investigating a series expansion for a function 
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which gives approximations near to 
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If we put 
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 then all the terms except the first are zero and we get 
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 We shall now assume that it is valid to differentiate an infinite series term-by-term (explored in MA204), to obtain
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Putting 
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Differentiating again gives
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Putting 
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If we repeat this process we find that 
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 and so on. This generalises to suggest that 
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 So we have formulae for the coefficients in terms of  f  and its derivatives. We use these to define the

Taylor Expansion of f(x) about x = a
To be the series 
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When we truncate this series, stopping at the term of degree n, we obtain the Taylor Polynomial of f(x) about x = a of degree n.

The special case 
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 is called the Maclaurin Series, which is therefore a series involving just powers of x.
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Comments

1. The Taylor Series usually converges to the function 
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 that we start with - but there are exceptions.

2. You should learn the Maclaurin expansions of the exponential, sine and cosine functions on pages 567 and 568 of Adams.

3. If a function is equal to some series expansion in powers of x (or 
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) then that must be the Maclaurin (Taylor) expansion, i.e. the series is unique.

4. There are precise conditions for the validity of results like 1 and 3, explored in MA201.

5. Result 3 helps to construct expansions as in the examples below.

6. Under appropriate conditions we can perform operations on series to get new series: addition, multiplication, substitution, differentiation, integration.

Example 1

Using the known expansion for the exponential function gives
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Example 2
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Integrating, and using 
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 to show that the constant of integration is zero, gives
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Example 3
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Substitute 
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 for x
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Integrate
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What these examples indicate is that in many cases it is not necessary to work out the coefficients using the formula 
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 This can get very complicated.

Example 4

We want to work out the expansion of 
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 If we do this from the formula we have to work out successive derivatives:
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It just gets worse. What we should do is to use the known expansion for the exponential function and then substitute 
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