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MA101 Calculus - Outline Notes: Integration by Parts

This again is a technique you should have met at A-level. We shall revise it and extend its applications. The method is discussed in section 6.1 of Adams.

Integration by parts is a consequence of the product rule for differentiation. We know that 
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 We therefore obtain by integrating both sides and rearranging terms: 
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 The method is applicable when we have an integral of the form 
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 to evaluate. To apply the method we have to decide which of f and g should be identified with U. If for example we choose 
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 this will be because 
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 is a simpler expression than U. We will then have to let 
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 and we therefore have to be able to find V, i.e., we must be able to integrate g.

There are a number of worked examples on pages 346 and 347 of Adams.

Example 1

Find 
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The integrand is a product, and it is clear that if we let 
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 which is indeed simpler. We then have to let 
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 Integrating by parts therefore gives 
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Always check your answer by differentiation.

Example 2

Find 
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This is an unusual application of integration by parts. We let 
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 Integrating by parts then gives
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Always check your answer by differentiation.

Example 3

Find 
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In this example it is not clear what to choose for U. In fact either choice would work. We shall see that in this example we have to integrate by parts twice (as with example 2(b) in Adams). We appear to end up where we started, but in fact we shall obtain an equation for I. In each case we let 
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 Integrating by parts twice then gives
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Therefore 
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 and so 
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In this example we have integrated by parts twice. Sometimes we have integrals like 
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 where we would have to integrate by parts several times. In an example like this we find that the structure of successive steps is often very similar, and so we formulate a generic step which can then be repeated. This gives rise to reduction formulae, discussed in the next section of the notes.
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