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MA101 Calculus - Outline Notes: Exponential & Logarithmic Functions

There is extensive discussion of this topic in pages 178-191 in Adams. Some of the material is revision of A-level coverage of these topics.

You should LEARN the Laws of Indices (p. 179) and the Laws of Logarithms (p.181)

Exponential and logarithmic functions are inverses of one another (see graphs on page 187). 
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Because of this we could adopt two equivalent theoretical approaches to defining the exponential and logarithmic functions:

1. Define the exponential function from scratch (as the sum of a series, or as a function which is its own derivative for example), establish its properties, and then define the logarithmic function as the inverse of the exponential function. Then deduce the properties of ln from those already established for exp.

2. Define the logarithmic function from scratch (often as 
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  ), establish its properties, and then define the exponential function as the inverse of the logarithmic function. Then deduce the properties of  exp  from those already established for ln.

The first of these is explored on pages 210-213, where example 2 deduces one of the laws of logarithms from the corresponding law of indices. Here is another example:

Example 1

Deduce from the properties of the exponential function that 
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Example 2

Another important pair of properties can be deduced from the fundamental inverse relationship given above: 
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Substituting for x and for y respectively: 

1. Eliminating x gives 
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2. Eliminating y gives 
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Sometimes we use  exp  as an abbreviation for the exponential function. It is convenient to use in complicated expressions. For example
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 is easier to read and understand than   
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With this notation the laws of indices become 
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Other exponentials

You have an 
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 button on you calculator. So your calculator would give a value to 
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 How does it work this out? What does it mean - after all we can't multiply 
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 by itself 
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 times! We would like to define 
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in such a way that it is consistent with the laws of indices and logarithms we already know. If we make this assumption then we have 
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Since we already know about the exponential and logarithmic functions we can now give a definition.
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So we can now evaluate such expressions to whatever accuracy we like in terms of the accuracy of exp and ln. We can now answer the question What is 
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 We can use the definition to give and "exact" answer and use only the exp and ln buttons on the calculator to give an approximation. In fact 
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 is irrational. The general result of which this is a special case was proved in 1934.
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Other bases for logarithms

On your calculator you have log as well as ln. 

log is the inverse of 
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 ln is the inverse of  
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We define 
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 as the inverse of 
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 as "the logarithm of x to base a. These are largely of theoretical interest, although 
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 is sometimes used in computing. General logarithms are discussed in Adams. If you have not met them before study that section (p. 189) and try a few of the exercises.

Before the advent of calculators 
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 was very important. In school we had tables of 
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 and its inverse (often called "antilogarithms"). Because of the law of logarithms
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we can use logarithms to transform a multiplication problem (hard) into an addition problem (easy). These were performed as pencil and paper calculation using the log tables. The tables were "four figure tables" giving four decimla places. Historically logarithms and trigonometric tables were developed for astronomical purposes and books of Seven figure tables were published.

A typical schematic for such a calculation is as follows:
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The working was set out in columns as follows:

No.
Log

2
.3010

3
.4771

5.999
.7781 +

23
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.3010


.4771





(using four figure tables)





ADD





.7781





5.999
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