Question

Suppose that X has the standard normal distribution, i.e.

$$
f(x)=\frac{1}{\sqrt{2} \pi} e^{-\frac{1}{2} x^{2}}, \quad-\infty<x<\infty
$$

Derive the moment generating function of $Y=X^{2}$. What distribution does Y follow?

Answer

$$
\begin{aligned}
M_{X}(t)= & E\left(e^{t Y}\right) \\
= & E\left\{e^{t X^{2}}\right\} \\
= & \int_{-\infty}^{\infty} e^{t x^{2}} \frac{e^{-\frac{1}{2} x^{2}}}{\sqrt{2 \pi}} d x \\
= & \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2} x^{2}(1-2 t)}}{\sqrt{2 \pi}} d x \\
= & \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2} x^{2}} b^{2}}{\sqrt{2 \pi}} d x=b \\
& \text { where } b^{2}=\frac{1}{1-2 t}\left(\text { if } 1-2 t>0 \Rightarrow t<\frac{1}{2}\right) \\
= & \left(\frac{1}{1-2 t}\right)^{\frac{1}{2}} \text { if } t<\frac{1}{2} .
\end{aligned}
$$

Since the above is the mgf of the χ^{2} distribution with 1 degree of freedom we can conclude that $Y=X^{2}$ follows the χ^{2} distribution with 1 degree of freedom.

