Question

A man with n keys wants to open his door and tries the keys at random. Exactly one key will open the door. Let X denote the number of trials required to open the door for the first time. Find $E(X)$ if
(a) unsuccessful keys are not eliminated from further selections
(b) unsuccessful keys are eliminated

Answer

Let X be the number of trials needed to open the door. Let ' S ' denote success i.e. the door is opened and ' F ' denote failure for each trial.
(a) The event $X=x$ is equivalent to the event $\underbrace{F F F \ldots F}_{x-1 \text { times }} S$

Also $P(S)=\frac{1}{n}$ and $P(F)=\frac{n-1}{n}$.
X has the geometric distribution with $p=P(S)=\frac{1}{n}$.
Therefore $E(X)=\frac{1}{p}=\frac{1}{\frac{1}{n}}=n$
(b) If unsuccessful keys are eliminated then it can take at most n attempts to open the door with the following probabilities:

$$
\begin{aligned}
P(X=1) & =\frac{1}{n} \\
P(X=2) & =\frac{n-1}{n} \cdot \frac{1}{n-1}=\frac{1}{n} \\
P(X=3) & =\frac{n-1}{n} \cdot \frac{n-2}{n-1} \cdot \frac{1}{n-2}=\frac{1}{n} \\
& \vdots \\
P(X=n) & =\frac{n-1}{n} \cdot \frac{n-2}{n-1} \cdot \frac{n-3}{n-2} \ldots \cdot \frac{1}{2} \cdot 1=\frac{1}{n} .
\end{aligned}
$$

Therefore $E(X)=1 \cdot \frac{1}{n}+2 \cdot \frac{1}{n}+\ldots n \cdot \frac{1}{n}=\frac{n(n+1)}{2 n}=\frac{n+1}{2}$.

