Question

If $T: z \to \frac{z-i}{z+i}$ compute T^{-1} and hence or otherwise show that T maps the upper half plane $\{z|\mathrm{Im}(z)>0\}$ onto the unit disc $D=\{z|\,|z|<1\}$. Show further that T maps the positive real axis to the lower half of the unit circle and the negative real axis to the upper half of the unit circle.

Show that $z \to e^{\pi z}$ maps the strip $\{0 < \text{Im}(z) < 1\}$ conformally onto the upper half plane and find the images of the lines Im(z) = 0 and Im(z) = 1 under this transformation.

Hence find a conformal transformation which maps D onto this strip and takes the lower half circle to the real axis and the upper half circle to the line Im(z) = 1.

Answer

$$w = \frac{z-i}{z+i} \qquad z = i\frac{1+w}{1-w}$$

If z is real then $w = \frac{x-i}{x+i}$ $\bar{w} = \frac{x+i}{x-i}$, so $w\bar{w} = 1$

so w is on the unit circle.

If
$$w = e^{i\theta}$$
, then $z = i\frac{(1 + e^{i\theta})}{1 - e^{i\theta}} = i\frac{e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}}}{e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}}} = -\cot\frac{1}{2}\theta$ - real

so the real axis maps to |z| = 1 and vice versa.

$$z = i \rightarrow w = 0$$
 so U maps to D .

Now
$$-\pi < \theta < 0 \Leftrightarrow -\cot \frac{1}{2}\theta > 0$$

And
$$0 < \theta < \pi \Leftrightarrow -\cot \frac{1}{2}\theta < 0$$

So the lower half of the circle \rightarrow positive real axis.

and the upper half of the circle \rightarrow negative real axis.

$$w=e^{\pi z}$$
 - analytic

 $z = x \Rightarrow w = e^{\pi x}$ positive real axis

$$z = x + i \Rightarrow w = e^{\pi x + i} = -e^{\pi x}$$
 negative real axis

 $z = x + iy_0 \Rightarrow w = e^{\pi x}e^{i\pi y_0}$ which is a ray from 0 at angle πy_0 , which goes from 0 to π as y_0 goes from 0 to 1. So the strip maps conformally to the upper half plane.

$$T^{-1}$$
 maps D to U .

$$z = \frac{1}{\pi} \log w \text{ maps } U \text{ to } S$$

$$z = \frac{1}{\pi} \log i \frac{1+w}{1-w}$$
 maps D to S

and maps the halves of the circle in the required fashion.