Question

If $T: z \rightarrow \frac{z-i}{z+i}$ compute T^{-1} and hence or otherwise show that T maps the upper half plane $\{z \mid \operatorname{Im}(z)>0\}$ onto the unit disc $D=\{z| | z \mid<1\}$. Show further that T maps the positive real axis to the lower half of the unit circle and the negative real axis to the upper half of the unit circle.
Show that $z \rightarrow e^{\pi z}$ maps the strip $\{0<\operatorname{Im}(z)<1\}$ conformally onto the upper half plane and find the images of the lines $\operatorname{Im}(z)=0$ and $\operatorname{Im}(z)=1$ under this transformation.
Hence find a conformal transformation which maps D onto this strip and takes the lower half circle to the real axis and the upper half circle to the line $\operatorname{Im}(z)=1$.

Answer

$w=\frac{z-i}{z+i} \quad z=i \frac{1+w}{1-w}$.
If z is real then $w=\frac{x-i}{x+i} \quad \bar{w}=\frac{x+i}{x-i}$, so $w \bar{w}=1$
so w is on the unit circle.
If $w=e^{i \theta}$, then $z=i \frac{\left(1+e^{i \theta}\right)}{1-e^{i \theta}}=i \frac{e^{-i \frac{\theta}{2}}+e^{i \frac{\theta}{2}}}{e^{-i \frac{\theta}{2}}-e^{i \frac{\theta}{2}}}=-\cot \frac{1}{2} \theta-$ real
so the real axis maps to $|z|=1$ and vice versa.
$z=i \rightarrow w=0$ so U maps to D.
Now $-\pi<\theta<0 \Leftrightarrow-\cot \frac{1}{2} \theta>0$
And $0<\theta<\pi \Leftrightarrow-\cot \frac{1}{2} \theta<0$
So the lower half of the circle \rightarrow positive real axis.
and the upper half of the circle \rightarrow negative real axis.
$w=e^{\pi z}$ - analytic
$z=x \Rightarrow w=e^{\pi x}$ positive real axis
$z=x+i \Rightarrow w=e^{\pi x+i}=-e^{\pi x}$ negative real axis
$z=x+i y_{0} \Rightarrow w=e^{\pi x} e^{i \pi y_{0}}$ which is a ray from 0 at angle πy_{0}, which goes from 0 to π as y_{0} goes from 0 to 1 . So the strip maps conformally to the upper half plane.
T^{-1} maps D to U.
$z=\frac{1}{\pi} \log w$ maps U to S
$z=\frac{1}{\pi} \log i \frac{1+w}{1-w} \operatorname{maps} D$ to S
and maps the halves of the circle in the required fashion.

