Question

i) Let $h(z)=\frac{1}{(z-2)(z+3)}$.

Find the Laurent series expansion of $f(z)$ in powers of z, valid in the annulus $2<|z|<3$ and obtain the coefficient of z^{n} explicitly for $n=-2,-1,0,1,2$.
ii) Let $f(z)$ and $g(z)$ be analytic functions in a neighbourhood of $z=a$. Let $f(z)$ have a zero of order k at $z=a$ and $g(z)$ have a zero of order l at $z=a$. If $k>l$ show that $F(z)=\frac{f(z)}{g(z)} \quad(z \neq a)$ has a removable singularity at $z=a$ and that if we extend its definition to $z=a$ by defining $F(a)=0$ then F has a zero of order $k-l$ at $z=a$.

Describe the nature of $F(z)$ near $z=a$ if $k<l$.
If $k=l$ show that $F(z)$ again has a removable singularity at $z=a$. If $g^{\prime}(a) \neq 0$ prove that $l=1$ and

$$
\lim _{z \rightarrow a} \frac{f(z)}{g(z)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

Answer

i) $\frac{1}{(z-2)(z-3)}=\frac{1}{z-3}-\frac{1}{z-2}=\frac{-1}{3\left(1-\frac{z}{3}\right)}-\frac{1}{z\left(1-\frac{2}{z}\right)}$

For $2<|z|<3,\left|\frac{z}{3}\right|<1$ and $\left|\frac{2}{z}\right|<1$, so using the binonmial theorem gives
$-\frac{1}{3}\left(1+\frac{z}{3}+\left(\frac{z}{3}\right)^{2}+\cdots\right)-\frac{1}{z}\left(1+\frac{2}{z}+\left(\frac{2}{z}\right)^{2}+\cdots\right)$
$=\cdots-\frac{2^{n}}{z^{n+1}}-\cdots-\frac{2}{z^{2}}-\frac{1}{z}-\frac{1}{3}-\frac{z}{3^{2}}-\frac{z^{2}}{3^{3}}-\cdots-\frac{z^{n}}{3^{n+1}}-\cdots$
ii) $f(z)=(z-a)^{k} f^{*}(z)$ and $g(z)=(z-a)^{l} g^{*}(z)$ where f^{*} and g^{*} are analytic in a neighbourhood of a and non-zero at $z=a$.
$F(z)=\frac{f(z)}{g(z)}=(z-a)^{k-l} \frac{f^{*}(z)}{g^{*}(z)}$

If $k>l, F(z) \rightarrow 0$ as $z \rightarrow a$, a removable singularity.
If $k<l, F(z)$ has a pole of order $l-k$ at $z=a$.
If $k=l, F(z)=\frac{f^{*}(z)}{g^{*}(z)} \rightarrow \frac{f^{*}(a)}{g^{*}(a)} \neq 0$, so F has a removable singularity.
Now if $l=1, g(z)=g^{\prime}(a)(z-a)+\cdots$ (by Taylor's theorem)
So $g^{*}(a)=g^{\prime}(a)$, and similarly $f^{*}(a)=f^{\prime}(a)$.
So $\lim _{z \rightarrow a} \frac{f(z)}{g(z)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}$

