Question

i) State the Maximum Modulus Principle for a function $f(z)$ that is analytic within a simple closed contour γ and continuous on γ.
Show that if $f(z) \neq 0$ for all z within and on γ, then the minimum value of $|f(z)|$ cannot be achieved in the interior of γ.
Hence find the maximum and minimum values of $\left|e^{z^{2}}\right|$ in the disc $\{z||z| \leq 1\}$, and find where these values are attained.
ii) Suppose that $f(z)$ and $g(z)$ are analytic in the disc $\{z||z|<1\}$ and continuous on $|z|=1$. Suppose that f and g do not vanish for $|z| \leq 1$, and that $|f(z)|=|g(z)|$ whenever $|z|=1$. Prove that if $f(0)$ and $g(0)$ are positive real numbers then $f(z)=g(z)$ whenever $|z| \leq 1$.

Answer

i) First part bookwork.

Now $e^{z^{2}} \neq 0$, so $\left|e^{z^{2}}\right|$ has max and min in D on the boundary.
Let $z=e^{i \theta}$, so $e^{z^{2}}=e^{2 i \theta}$, and $\left|e^{z^{2}}\right|=c^{\cos 2 \theta}$
so this is maximal where $\cos 2 \theta=+1$ i.e. $\theta=0$, π i.e. $\max e$. and this is minimal where $\cos 2 \theta=-1$ i.e. $\theta=\frac{\pi}{2}, \frac{3 \pi}{2}$ i.e. $\min e^{-1}$.
ii) Let $h(z)=\frac{f(z)}{g(z)}$ and $k(z)=\frac{g(z)}{f(z)}$.

Both h and k are analytic in $|z|<1$ since f and g are, and are non-zero. The max of $|h|$ and $|k|$ are both achieved on the boundary, and in fact $|h|=|k|=1$ on the boundary.
So $\frac{f(0)}{g(0)} \leq 1$ and $\frac{g(0)}{f(0)} \leq 1$. Thus $f(0)=g(0)=1$.
Thus h has a local maximum at 0 and is therefore constant in D
i.e. $f(z) \equiv g(z)$ in D.

