Question

- i) State the Maximum Modulus Principle for a function f(z) that is analytic within a simple closed contour γ and continuous on γ .
 - Show that if $f(z) \neq 0$ for all z within and on γ , then the minimum value of |f(z)| cannot be achieved in the interior of γ .
 - Hence find the maximum and minimum values of $|e^{z^2}|$ in the disc $\{z | |z| \le 1\}$, and find where these values are attained.
- ii) Suppose that f(z) and g(z) are analytic in the disc $\{z | |z| < 1\}$ and continuous on |z| = 1. Suppose that f and g do not vanish for $|z| \le 1$, and that |f(z)| = |g(z)| whenever |z| = 1. Prove that if f(0) and g(0) are positive real numbers then f(z) = g(z) whenever $|z| \le 1$.

Answer

i) First part bookwork.

Now $e^{z^2} \neq 0$, so $|e^{z^2}|$ has max and min in D on the boundary. Let $z = e^{i\theta}$, so $e^{z^2} = e^{2i\theta}$, and $|e^{z^2}| = e^{\cos 2\theta}$ so this is maximal where $\cos 2\theta = +1$ i.e. $\theta = 0, \pi$ i.e. max e. and this is minimal where $\cos 2\theta = -1$ i.e. $\theta = \frac{\pi}{2}, \frac{3\pi}{2}$ i.e. min e^{-1} .

ii) Let $h(z) = \frac{f(z)}{g(z)}$ and $k(z) = \frac{g(z)}{f(z)}$.

Both h and k are analytic in |z| < 1 since f and g are, and are non-zero. The max of |h| and |k| are both achieved on the boundary, and in fact |h| = |k| = 1 on the boundary.

So
$$\frac{f(0)}{g(0)} \le 1$$
 and $\frac{g(0)}{f(0)} \le 1$. Thus $f(0) = g(0) = 1$.

Thus h has a local maximum at 0 and is therefore constant in D i.e. $f(z) \equiv g(z)$ in D.