Question

Throughout this question the branch of $\log z$ whose imaginary part v satisfies $-\pi < v \le \pi$ is used.

i) Let γ be the circle |z| = R, where R > 1. Stating carefully any inequalities concerning integrals you use prove that

$$\left| \int_{\gamma} \frac{\log z dz}{z^2} \right| \le 2\pi \left(\frac{\pi + \log R}{R} \right)$$

- ii) Evaluate $\int_{\delta} \log z dz$, where δ is the upper half of the unit circle from z=1 to z=-1.
- iii) Let n denote the circle with centre $\frac{1+\sqrt{3}i}{2}$ and radius $\frac{1}{2}$. Use the Cauchy Integral Formula to evaluate

$$\int_{n} \frac{\log z dz}{z - \left(\frac{1}{2} + \frac{\sqrt{3}i}{2}\right)}$$

Answer

- i) On γ , $|\log z| = |\log R + i\theta| \le \log R + \pi$ since |z| = R, $\left| \frac{\log z}{z^2} \right| \le \frac{\log R + \pi}{R^2}$ $l(\gamma) = 2\pi R$, so $\left| \int_{\gamma} \frac{\log z}{z^2} dz \right| \le 2\pi \left(\frac{\log R + \pi}{R} \right)$
- ii) On δ , $z = e^{i\theta}$ and $\log z = i\theta$, $0 \le \theta \le \pi$ So $\int_{\delta} \log z dz = \int_{0}^{\pi} i\theta i e^{i\theta} d\theta = 2 - \pi i$ (by parts)
- iii) n lies in the first quadrant so $\log z$ is analytic inside and on n

So
$$\int_{n} \frac{\log z}{z - \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)} = \log\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = \log 1 + i\frac{\pi}{3} = i\frac{\pi}{3}$$