
Question

Throughout this question the branch of log z whose imaginary part v satisfies
−π < v ≤ π is used.

i) Let γ be the circle |z| = R, where R > 1. Stating carefully any
inequalities concerning integrals you use prove that
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ii) Evaluate
∫

δ
log zdz, where δ is the upper half of the unit circle from

z = 1 to z = −1.
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Answer

i) On γ, | log z| = | logR + iθ| ≤ logR + π

since |z| = R,
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l(γ) = 2πR, so
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ii) On δ, z = eiθ and log z = iθ, 0 ≤ θ ≤ π

So
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iθieiθdθ = 2− πi (by parts)

iii) n lies in the first quadrant so log z is analytic inside and on n
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