Question

Derive the Cauchy-Riemann equations as necessary conditions for the function

$$f(z) = u(x,y) + iv(x,y)$$
, where $z = x + iy$

to be analytic. State without proof sufficient conditions for the differentiability of f in terms of the partial derivatives of u and v.

Let
$$f(z) = \frac{z}{\overline{z}}$$
, $(z \neq 0)$

Show that f is differentiable nowhere in $\mathbb{C} - \{0\}$. Is it possible to extend the definition of f to 0 in such a way that f is differentiable at 0? Justify your answer.

Answer

Derivation of Cauchy-Riemann equations is bookwork.

Let
$$f(z) = \frac{z}{\bar{z}} = \frac{x+iy}{x-iy} = (x+iy)^2 x^2 + y^2 = \frac{x^2-y^2}{x^2+y^2} + i\frac{2xy}{x^2+y^2}$$
 $z \neq 0$

$$\frac{\partial u}{\partial x} = \frac{(x^2+y^2)2x - (x^2-y^2)2x}{(x^2+y^2)^2} = \frac{4xy^2}{(x^2+y^2)^2}$$

$$\frac{\partial v}{\partial y} = \frac{(x^2+y^2)2y - 2xy2x}{(x^2+y^2)^2} = \frac{2y^3}{(x^2+y^2)^2}$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \text{ iff } 4xy^2 = 2y^3 \text{ i.e. } 4x = 2y \text{ or } y = 0$$

$$\frac{\partial u}{\partial y} = \frac{(x^2+y^2)(-2y) - (x^2-y^2)2y}{(x^2+y^2)^2} = \frac{-4x^2y}{(x^2+y^2)^2}$$

$$\frac{\partial v}{\partial x} = \frac{(x^2+y^2)2x - 2xy2y}{(x^2+y^2)^2} = \frac{2x^3}{(x^2+y^2)^2}$$

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \text{ iff } 4x^2y = 2x^3 \text{ i.e. } 4y = 2x \text{ or } x = 0$$
The conditions cannot be satisfied for $z \neq 0$.

The conditions cannot be satisfied for $z \neq 0$. Now in polars $z = re^{i\theta}$ and $\bar{z} = re^{-i\theta}$. So $\frac{z}{\bar{z}} = e^{2i\theta}$

For
$$\theta = 0$$
, $\frac{z}{\bar{z}} = 1$ and for $\theta = \frac{\pi}{2}$, $\frac{z}{\bar{z}} = -1$

So f(z) does not have a limit as $z \to 0$ and so cannot be defined to be differentiable or continuous at z = 0.