Question

(a) If the Laplace transform of a suitable function f(t) is defined to be

$$\bar{f}(p) = \int_0^\infty dt \ f(t) \exp(-pt), \ Re \ p > 0$$

state *carefully* the inverse transform in terms of a contour integral.

- (b) (i) Using this integral representation, defining $-\pi < \arg p \le \pi$, and suitably closing the contour, show that the inverse Laplace transform of $\bar{f}_1(p) = \log p$ is $f_1(t) = -\frac{1}{t}$. (You may assume without proof that all integrals over infinite or vanishing arcs give a zero contribution.)
 - (ii) Hence show that the inverse Laplace transform of $\bar{f}_2(p) = \log(p+1)$ is $f_2(t) = -\frac{e^{-t}}{t}$.
 - (iii) Using parts (i) and (ii), show that the inverse Laplace transform of $\bar{f}_3 = \log \left[\frac{(p+1)}{p} \right]$ is $f_3(t) = \frac{(1-e^{-t})}{t}$.
- (c) Show that the following equation

$$t\frac{d^2f}{dt^2} + 2\frac{df}{dt} + tf = 1 - 2e^{-t}$$

$$f(0) = 1, \ f'(0) = -\frac{1}{2}.$$

can be Laplace-transformed to give

$$\frac{d\bar{f}}{dp} = -\frac{1}{p(p+1)}.$$

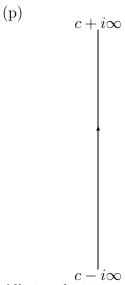
Consequently, using the results of part b, solve for f(t).

Answer

(a)
$$\hat{f}(p) = \int_0^\infty dt \ f(t)e^{-pt}, \ Re(p) > 0$$

$$\Rightarrow f(t) = \frac{1}{2\pi i} \int_C dp \ e^{pt} \hat{f}(p), \ t > 0$$

Bromwich Contour: C:



 $c-i\infty$ All singularities to left of c.

(b) (i) Want
$$f_1(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dp \log p e^{pt}$$
 p has branch point at $p=0$, define branch on $-\pi < \arg p \le \pi$.

Complete to left.

PICTURE

Close p to left and form keyhole contour. Integrals (2), (4) and (6) vanish by hint. Therefore

$$(1) = \frac{1}{2\pi i} \int_{\infty}^{0} dx \ e^{i\pi} \log(xe^{i\pi}e^{-xt})$$

$$(3) : p = xe^{i\pi}$$

$$+ \frac{1}{2\pi i} \int_{0}^{\infty} dx \ e^{i\pi} \log(xe^{-i\pi})e^{-xt}$$

$$(5) : p = xe^{-i\pi}$$

$$= + \frac{1}{2\pi i} \int_{0}^{\infty} dx (\log x + i\pi)e^{-xt}$$

$$- \frac{1}{2\pi i} \int_{0}^{\infty} dx (\log x - i\pi)e^{-xt}$$

$$= \frac{2\pi i}{2\pi i} \int_{0}^{\infty} dx \ e^{-xt}$$

$$= -\frac{1}{t}$$

Therefore
$$\hat{f}_1(p) = \log p \Leftrightarrow f_1(t) = -\frac{1}{t}$$
.

(ii) Use Laplace's transform property that

$$L\left[e^{at}f(t)\right] = \hat{f}(p)$$

$$\Rightarrow L\left[e^{-t}f(t)\right] = \hat{f}(p+1)$$

Therefore if
$$\hat{\mathbf{f}}(\mathbf{p}+1) = \hat{\mathbf{f}}_2(\mathbf{p}) = \log(p+1)$$

 $\Rightarrow \hat{f}_2(p) = \hat{f}_1(p+1)$
 $\Rightarrow f_2(t) = e^{-t}f_1(t)$
 $\Rightarrow \underline{f}_2(t) = -\frac{e^{-t}}{t}$

(iii) Laplace transforms are linear, so

$$L[f_1(t) + f_2(t)] = L[f_2(t)]$$

$$\Leftrightarrow L\left[\frac{1-e^{-t}}{t}\right] = L\left[\frac{1}{t}\right] + L\left[-\frac{e^{-t}}{t}\right]$$

$$= -L\left[\frac{1}{t}\right] + L\left[-\frac{e^{-t}}{t}\right]$$

$$= \log(p+1) - \log p$$

$$= \log\left(\frac{p+1}{p}\right)$$

$$\Rightarrow L^{-1}\left[\log\left(\frac{p+1}{p}\right)\right] = \frac{1 - e^{-t}}{t}$$

$$L[tf''] = -\partial p L[f'']$$

$$= -\frac{pl}{\partial p}[p^2 \bar{f}(p) - p \underline{f(0_+)} + \underline{f'(0_+)}]$$

$$= +1 = -\frac{1}{2}$$

$$= -\frac{\partial}{\partial p} \left[p^2 \bar{f} - p - \frac{1}{2} \right]$$

$$= -2p \bar{f} - p^2 \bar{f'} + 1$$

$$L[2f'] = 2[p \bar{f} - \underline{f(0_+)}]$$

$$= +1$$

$$= 2p \bar{f} - 2$$

$$L[tf] = -\partial_p \bar{f}(p) = -\bar{f'}(p)$$

$$L[1] = \int_0^\infty dt \ e^{-pt} = \frac{1}{p}$$

$$L[-2e^{-t}] = -2 \int_0^\infty dt \ e^{-(p+1)t} = \frac{-2}{(p+1)}$$

Therefore L[equation] is

$$-2p\bar{f} - p^2\bar{f}' + 1 + 2p\bar{f} - 2 - f' = \frac{1}{p} - \frac{2}{p+1}$$

Therefore

$$-(p^{2}+1)\bar{f}' = 1 + \frac{1}{p} - \frac{2}{p+1}$$

$$= \frac{p(p+1) + (p+1) - 2p}{p(p+1)}$$

$$= \frac{p^{2} + p + p + 1 - 2p}{p(p+1)}$$
Therefore $-(p^{2}+1)\bar{f}' = \frac{(p^{2}+1)}{p(p+1)}$
Therefore $\bar{f}' = -\frac{1}{p(p+1)}$ as required

$$\bar{f}' = -\frac{1}{p} + \frac{1}{p+1}$$

$$\Rightarrow \bar{f} = -\log p + \log(p+1) + \log c \quad c = const$$

$$\bar{f} = \log \left\{ \left[\frac{(p+1)}{p} \right] c \right\}$$

$$\Rightarrow f(t) = D \frac{(1-e^{-t})}{t}$$

By previous bits of question and standard results. D = constBut if $f(0) = 1 \Rightarrow D = 1$ since

$$f(t) = \left(\frac{1 - e^{-t}}{t}\right)$$

and $\lim_{t\to 0} f(t) = \lim_{t\to 0} + \frac{e^{-t}}{1} = 1$ by L'Hopital Hence

$$f(t) = \frac{1 - e^{-t}}{t}$$