QUESTION A continuous random variable X is uniformally distributed in the interval $-1 \leq x \leq 1$. Find $\mathrm{E}(\mathrm{X})$ and $\operatorname{Var}(\mathrm{X})$. The random variable Y is defined by $Y=X^{2}$, Use the cdf of X to show that $P(Y \leq y)=\sqrt{Y}, o \leq$ $y \leq 1$ and obtain the pdf of Y. Hence or otherwise evaluate $\mathrm{E}(\mathrm{Y})$ and $\operatorname{Var}(\mathrm{Y})$.

ANSWER $f(x)=\frac{1}{2} \quad-1 \leq x \leq 1$
$E(X)=0($ by symmetry $)=\int_{-1}^{1} \frac{1}{2} x d x$ $E\left(X^{2}\right)=\operatorname{Var}(X)=\int_{-1}^{1} \frac{1}{2} x^{2} d x=\left[\frac{1}{6} x^{3}\right]_{-1}^{1}=\frac{1}{3}$

$$
\begin{aligned}
F(x) & =\int_{-1}^{x} \frac{1}{2} d s \\
& =\frac{1}{2}(x+1) \\
& =P(-\sqrt{y} \leq X \leq \sqrt{y}) \\
& =F(\sqrt{y})-F(-\sqrt{y})=\sqrt{y}, \quad 0 \leq y \leq 1
\end{aligned}
$$

$$
g(y)=\frac{d}{d y} P(Y \leq y)=\frac{1}{2 \sqrt{y}}, \quad 0 \leq y \leq 1
$$

$$
E(Y)=E\left(X^{2}\right)=\frac{1}{3}=\int_{0}^{1} \frac{1}{2} \sqrt{y} d y
$$

$E\left(Y^{2}\right)=E X\left(X^{4}\right)=\frac{1}{5}=\int_{0}^{1} \frac{1}{2} y^{\frac{3}{2}} d y$ Therefore $\operatorname{Var}(\mathrm{Y})=\frac{1}{5}-\frac{1}{9}=\frac{4}{45}$

