Question

Solve the following differential equations subject to the given initial conditions:

1. $y^{\prime \prime}+y^{\prime}-2 y=2 e^{x} \quad y(0)=0 \quad y^{\prime}(0)=1$
2. $y^{\prime \prime}-2 y^{\prime}+y=e^{x}+4 \quad y(0)=1 \quad y^{\prime}(0)=1$
3. $y^{\prime \prime}+2 y^{\prime}+5 y=4 e^{-x} \cos 2 x \quad y(0)=1 \quad y^{\prime}(0)=0$

Answer

1. Auxiliary equation is: $m^{2}+m-2=0 \quad$ giving $m=-2,1$

Hence the complementary function is: $y_{c f}=A e^{-2 x}+B e^{x}$
Note that the right hand side of the equation contains a linear combination of the complementary function so try the particular integral: $y_{p}=a x e^{2 x}$
Equation becomes: $\left(2 a e^{x}+a x e^{x}\right)+\left(a e^{x}+a x e^{x}\right)-2\left(a x e^{x}\right)=2 e^{x}$
Hence $3 a e^{x}=2 e^{x} \quad$ so that $\quad a=2 / 3$
The general solution is: $y=A e^{-2 x}+B e^{x}+\frac{2}{3} x e^{x}$
Imposing $y(0)=1$ gives $\quad A+B=0$
Imposing $=y^{\prime}(0)=1$ gives $\quad-2 A+B+2 / 3=1$
Hence $A=\frac{-1}{9}$ and $B=\frac{1}{9}$ Hence $y=\frac{1}{9}\left(e^{x}-e^{-2 x}\right)+\frac{2}{3} x e^{x}$
2. Auxiliary equation is: $m^{2}-2 m+1=0 \quad$ giving $m=1,1$

Hence the complementary function is: $y_{c f}=e^{x}(A+B x)$
Note that the right hand side contains a term, e^{x} which is in the complementary function and that $x e^{x}$ is also on the complementary function. Hence try the particular integral: $y_{p}=a x^{2} e^{x}+b$
(the a term allows for the e^{x} in the right hand side and the b term allows for the constant, 4.) Equation becomes:
$\left(2 a e^{x}+4 a x e^{x}+a x^{2} e^{x}\right)-2\left(2 a x e^{x}+a x^{2} e^{x}\right)+\left(a x^{2} e^{x}+b\right)=e^{x}+4$
and simplifying gives: $2 a e^{-x}+b=e^{-x}+4$ so that $a=1 / 2$ and $b=4$
The general solution is: $y=e^{x}(A+B x)+\frac{1}{2} x^{2} e^{x}+4$
Imposing $y(0)=1$ gives $\quad A+4=1$

Imposing $y^{\prime}(0)=1$ gives $\quad A+B=1$
so that $A=-3$ and $B=4$.
Giving the solution $y=e^{x}(4 x-3)+\frac{1}{2} x^{2} e^{x}+4$
3. Auxiliary equation is: $m^{2}+2 m+5=0 \quad$ giving $m=-1 \pm 2 i$

Hence the complementary function is: $y_{c f}=e^{-x}(A \cos (2 x)+B \sin (2 x))$
Note that the right hand side of the equation contains a linear combination of the complementary function so:
try the particular integral: $y_{p}=a x e^{-x} \sin (2 x)+b x e^{-x} \cos (2 x)$
Equation becomes:
$\left(a\left(-2 e^{-x} \sin (2 x)+4 e^{-x} \cos (2 x)-4 x e^{-x} \cos (2 x)-3 x e^{-x} \sin (2 x)\right)\right.$
$\left.+b\left(-4 e^{-x} \sin (2 x)-2 e^{-x} \cos (2 x)-3 x e^{-x} \cos (2 x)+4 x e^{-x} \sin (2 x)\right)\right)$
$+2\left(a\left(e^{-x} \sin (2 x)+2 x e^{-x} \cos (2 x)-x e^{-x} \sin (2 x)\right)+b\left(e^{-x} \cos (2 x)-2 x e^{-x} \sin (2 x)-\right.\right.$
$\left.\left.x e^{-x} \cos (2 x)\right)\right)+5\left(a x e^{-x} \sin (2 x)+b x e^{-x} \cos (2 x)\right)=4 e^{-x} \cos (2 x)$
Hence
$\left(a\left(-2 e^{-x} \sin (2 x)+4 e^{-x} \cos (2 x)\right)+b\left(-4 e^{-x} \sin (2 x)-2 e^{-x} \cos (2 x)\right)\right)$
$+2\left(a\left(e^{-x} \sin (2 x)\right)+b\left(e^{-x} \cos (2 x)\right)\right)=4 e^{-x} \cos (2 x)$
so that $\quad a=1$ and $b=0$
The general solution is: $y=e^{-x}(A \cos (2 x)+B \sin (2 x))+x e^{-x} \sin 2 x$
Imposing $y(0)=1$ gives $\quad A=1$
Imposing $y^{\prime}(0)=0$ gives $\quad-A+2 B=0$ or $B=1 / 2$
Hence $y=e^{-x}\left(\cos (2 x)+\frac{1}{2} \sin (2 x)\right)+x e^{-x} \sin 2 x$
(note that the particular integral for this last question can also be found by writing the problem in the form

$$
y^{\prime \prime}+2 y^{\prime}+5 y=2\left(e^{(-1+2 i) x}+e^{(-1-2 i) x}\right)
$$

and then seeking a particular integral of the form $y_{p}=a x e^{(-1+2 i) x}+$ $b x e^{(-1-2 i) x}$
but care must be taken as both a and b here will be complex and to get a real solution we shall require $b=a^{*}$ (where ${ }^{*}$ means complex conjugate).)

