QUESTION

Let U_{n} denote the group of units modulo n.
(i) Explain the following terms: (a) $g \in U_{n}$ is a primitive root and (b) $g \in U_{n}$ is a quadratic non-residue.
(ii) Suppose that $p=2^{m}+1$ is a prime for some $m>0$. Show rhat $g \in U_{p}$ is a quadratic non-residue if and only if it is a primitive root.
(iii) Using quadratic reciprocity, or otherwise, show that

$$
3^{\frac{(p-1)}{2}} \equiv-1(\text { modulo } p)
$$

(iv) If n is an integer of the form $n=2^{2^{m}}+1$ such that $3^{\frac{(n-1)}{2}} \equiv-1$ (modulo n) show that n is a prime. (Hint: In the proof of (iv) you may assume (see question $8($ viii)) without proof that $\phi(n) \leq n-\sqrt{n}$ if p is a composite integer.)

ANSWER

(i) If U_{n} is a cyclic group then any generator, $g \in U_{n}$ is called a primitive root modulo n. A quadratic non-residue, $g \in U_{n}$, is any element for which the equation $g=h^{2}$ has no solution $f \in U_{n}$.
(ii) If $p=2^{2^{m}}+1$ is a prime then U_{p} is cyclic of order $p-1=2^{2^{m}}$. Choose a generator, $g \in U_{p}$. Then g^{j} is a generator if and only if $\operatorname{gcd}\left(j, 2^{2^{m}}\right)=1$ is odd, which is equivalent to j being odd. On the other hand $g^{j}=$ $h^{2}=g^{2 s}$ has a solution if and only if j is even. Hence g^{j} is a quadratic non-residue if and only if j is odd.
(iii) If the order of 3 in U_{p} is equal to 2^{α} then $3^{2^{\alpha-1}}=-1$, since $3^{2^{\alpha-1}}$ is not congruent to 1 (modulo p) but its square is. Hence the given congruence is equivalent, by part (ii), to 3 being a quadratic non-residue modulo p. In terms of Legendre symbols

$$
\left(\frac{3}{P}\right)=-1
$$

if and only if

$$
3^{\frac{(p-1)}{2}} \equiv-1(\text { modulo } p)
$$

By Quadratis Reciprocity

$$
\left(\frac{3}{P}\right)\left(\frac{p}{3}\right)=(-1)^{(s-1)(p-1) / 4}=1
$$

However $p \equiv(-1)^{2^{m}}+1 \equiv 2$ (modulo 3$)$ and

$$
\left(\frac{2}{3}\right)=-1
$$

as required.
(iv) If $3^{\frac{(n-1)}{2}} \equiv-1$ (modulo n) then the order of 3 in U_{n} is at least $n-1$. However, $g^{\phi(n)} \equiv 1$ for all $g \in U_{n}$. Hence if n is composite the Hint yields

$$
n-1 \leq \phi(n) \leq n-\sqrt{n}
$$

which is impossible. Hence n must be prime.

