QUESTION

This question has been broken down into a series of cases. However, the objective is to prove that $\phi(n) \leq n-\sqrt{(} n)$ when n is a composite integer. Therefore full marks for parts (i)-(vii) may alternatively be obtained by just giving an alternative proof for part (vii).
(i) Give, without proof, the formula for Euler's function, $\phi(n)$, in terms of the prime power factorisation of n.
(ii) If p_{1}, p_{2} are distinct primes show that

$$
\phi\left(p_{1} p_{2}\right) \leq p_{1} p_{2}-\sqrt{p_{1} p_{2}} .
$$

(iii) If p_{1}, p_{2} are distinct primes and α is an integer such that $\alpha \geq 2$ show that

$$
\phi\left(p_{1} p_{2}^{\alpha}\right) \leq p_{1} p_{2}^{\alpha}-\sqrt{p_{1} p_{2}^{\alpha}} .
$$

(iv) If p_{1}, p_{2}, p_{3} are distinct primes show that

$$
\phi\left(p_{1} p_{2} p_{3}\right) \leq p_{1} p_{2} p_{3}-\sqrt{p_{1} p_{2} p_{3}} .
$$

(v) If p is a prime and α is a positive integer such $\alpha \geq 2$ show that

$$
\phi\left(p^{\alpha}\right) \leq p^{\alpha}-\sqrt{p^{\alpha}} .
$$

(vi) If $n_{1}, n_{2} \geq 2$ are integers show that

$$
\left(n_{1}-\sqrt{n_{1}}\right)\left(n_{2}-\sqrt{n_{2}}\right) \leq\left(n_{1} n_{2}-\sqrt{n_{1} n_{2}}\right) .
$$

(vii) If n is an integer which is not prime use parts (i)-(vi) to show that

$$
\phi(n) \leq n-\sqrt{n} .
$$

(viii) Does the inequality of (vi) hold when n is prime?

ANSWER
(i) If $n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$ with each $\alpha_{i} \geq 1$ and p_{1}, \ldots, p_{r} distinct primes then

$$
\phi(n)=p_{1}^{\alpha_{1}-1}\left(p_{I}-1\right) p_{2}^{\alpha_{2}-1}\left(p_{2}-1\right) \ldots p_{r}^{\alpha_{r}-1}\left(p_{r}-1\right)
$$

(ii) If $2 \leq p_{1}<p_{2}$ then $\phi\left(p_{1} p_{2}\right) p_{1} p_{2}-p_{1}-p_{2}+1$ so that the required inequality will follow from

$$
\sqrt{p_{1} p_{2}} \leq p_{1}+p_{2}-1
$$

which follows in turn from

$$
p_{1} p_{2} \leq p_{2}^{3} \leq\left(p_{i}+p_{2}-1\right)^{2} .
$$

(iii) We have

$$
\begin{aligned}
\phi\left(p_{1} p_{2}^{\alpha}\right) & =\left(p_{1}-1\right)\left(p_{2}^{\alpha}-p_{2}^{\alpha-1}\right) \\
& =p_{1} p_{2}^{\alpha}-p_{2}^{\alpha}-p_{1} p_{2}^{\alpha_{1}}+p_{2}^{\alpha-1} \\
& \leq p_{1} p_{2}^{\alpha}-p_{1} p_{2}^{\alpha-1} \\
& \leq p_{1} p_{2}^{\alpha}-\sqrt{p_{1} p_{2}^{\alpha}}
\end{aligned}
$$

since $\sqrt{p_{1}}<p_{1}$ and $\frac{\alpha}{2} \leq \alpha-1$.
(iv) If $2 \leq p_{1}<p_{2}<p_{3}$ then

$$
\phi\left(p_{1} p_{2} p_{3}\right)=p_{1} p_{2} p_{3}-p_{1} p_{2}-p_{1} p_{3}-p_{2} p_{3}+p_{1}+p_{2}+p_{3}-1
$$

so that the required inequality will follow from

$$
\sqrt{p_{1} p_{2} p_{3}} \leq p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}-p_{1}-p_{2}-p_{3}+1
$$

which follows in turn from

$$
p_{1} p_{2} p_{3} \leq\left(p_{1} p_{3}+p_{1} p_{2}-1\right)^{2} \leq\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}-p_{1} p_{2} p_{3}+1\right)^{2}
$$

which holds because $p_{2} p_{3} \geq 3 p_{3} \geq p_{1}+p_{2}+p_{3}$.
(v) We have $\phi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1} \leq p^{\alpha}-\sqrt{p^{\alpha}}$ since $\alpha-1 \geq \frac{\alpha}{2}$.
(vi) We have

$$
\begin{aligned}
\left(n_{1}-\sqrt{n_{1}}\right)\left(n_{2}-\sqrt{n_{2}}\right) & =n_{1} n_{2}-\sqrt{n_{1} n_{2}}+\sqrt{n_{1}}\left(\sqrt{n_{2}}-n_{2}\right)+\sqrt{n_{2}}\left(\sqrt{n_{1}}-n_{1}\right) \\
& \leq n_{1} n_{2}-\sqrt{n_{1} n_{2}}
\end{aligned}
$$

(vii) Suppose that the prime factorisation of n is $n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$. Since n is composite we may write $n=n_{1} n_{2} \ldots n_{s}$ where n_{1}, \ldots, n_{s} are pairwise coprime positive integers each of which is one of the type considered in parts (ii)-(v). The result now follows from part (vi) since

$$
\begin{aligned}
\phi(n) & =\phi\left(n_{1}\right) \ldots \phi\left(n_{s}\right) \\
& \leq\left(n_{1}-\sqrt{n_{1}}\right) \ldots\left(n_{s}-\sqrt{n_{s}}\right) \\
& \leq n_{1} \ldots n_{s}-\sqrt{n_{1} \ldots n_{s}}
\end{aligned}
$$

by induction on s.
(viii) When n is prime then $\phi(n)=n-1$ which is greater than $n-\sqrt{n}$ because $1<\sqrt{n}$. Therefore the inequality fails fro all primes.

