QUESTION

An integer $n \geq 1$ is called a Carmichael number if n is not a prime and $a^{n-1} \equiv 1$ (modulo n) for all integers a such that $\operatorname{gcd}(a, n)=1$. Throughout this question let n denote a Carmichael number..
(i) Show that n cannot be a power of 2 .
(ii) Let p be an odd prime such that p^{α} divides n with $\alpha \geq 1$. Show that $\alpha=1$ and $p-1$ divides $n-1$. (Hint: You may need to use the Chinese Remainder Theorem to make a good choice of α. Also you may assume that the group of units modulo p^{α}, usually denoted by $U_{p^{\alpha}}$, is cyclic of order $\phi\left(p^{\alpha}\right)$.)
(iii) Use part (ii) to show that n is odd.
(iv) Show that $n=p_{1} p_{2} \ldots p_{r}$ where p_{1}, \ldots, p_{r} are distinct odd primes and $r \geq 3$.

ANSWER

(i) Suppose that $n=2^{\alpha}$, Then $\alpha=1$ corresponds to $n=2$, which is prime, while for $\alpha \geq 2$ we may take $a=-1$ to obtain

$$
a^{2^{\alpha}-1}=(-1)^{2^{\alpha}-1}=-1
$$

which is not congruent to 1 modulo 4 much less modulo a^{α}.
(ii) Write $n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$ with each $\alpha_{i} \geq 1$ and $p_{1}, \ldots p_{r}$ distinct primes. Suppose that the odd prime p is p_{1} so that $\alpha=\alpha_{1}$. By the Chinese Remainder Theorem we may choose an integer, a, such that

$$
a= \begin{cases}x & \left(\operatorname{modulo} p_{1}^{\alpha_{1}}\right) \\ 1 & \left(\operatorname{modulo} p_{i}\right) \text { for } i=2, \ldots r\end{cases}
$$

where the multiplicative order of x modulo $p_{1}^{\alpha_{1}}$ is $\phi\left(p_{1}^{\alpha_{1}}\right)=p_{1}^{\alpha_{1}-1}\left(p_{1}-1\right)$. Such a choice of a satisfies $\operatorname{gcd}(a, n)=1$. Then $a^{n-1} \equiv 1($ modulo $n)$ implies that $x^{n-1} \equiv a^{n-1} \equiv 1$ (modulo $p_{1}^{\alpha_{1}}$). Therefore $p_{1}^{\alpha_{1}-1}\left(p_{1}-1\right)$ divides $n-1=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}-1$. If $\alpha_{1} \geq 2$ then p_{1} would divide 1 so we must have $\alpha_{1}=1$. In this case the condition that $\phi\left(p_{1}^{\alpha_{1}}\right)$ divides $n-1$ becomes simply $p_{1}==1$ divides $n-1$, as required.
(iii) By part (i), $r \geq 2$ in part (ii) and so one of the primes dividing n is odd. By part (ii). $n-1$ is even because it is divisible by $p-1$ for some odd prime. Hence n is odd.
(iv) By parts (ii) and (ii), n is a product of distinct odd primes. It remains to show that $n=p_{1} p_{2}$ is not a carmichael number when p_{1} and p_{2} are distinct primes. However the equation

$$
n-1=p_{1} p_{2}-1=\left(p_{1}-1\right)\left(p_{2}+\left(p_{2}-1\right)\right.
$$

together with part (ii) would imply that $\left(p_{2}-1\right)$ divides $\left(p_{1}-1\right)$ and vice versa. This would imply the contradiction that $p_{1}=p_{2}$.

