QUESTION

An integer $n \geq 1$ is called a *Carmichael number* if n is not a prime and $a^{n-1} \equiv 1 \pmod{n}$ for all integers a such that $\gcd(a,n) = 1$. Throughout this question let n denote a Carmichael number..

- (i) Show that n cannot be a power of 2.
- (ii) Let p be an odd prime such that p^{α} divides n with $\alpha \geq 1$. Show that $\alpha = 1$ and p-1 divides n-1. (Hint: You may need to use the Chinese Remainder Theorem to make a good choice of α . Also you may assume that the group of units modulo p^{α} , usually denoted by $U_{p^{\alpha}}$, is cyclic of order $\phi(p^{\alpha})$.)
- (iii) Use part (ii) to show that n is odd.
- (iv) Show that $n = p_1 p_2 \dots p_r$ where p_1, \dots, p_r are distinct odd primes and $r \geq 3$.

ANSWER

(i) Suppose that $n = 2^{\alpha}$, Then $\alpha = 1$ corresponds to n = 2, which is prime, while for $\alpha \ge 2$ we may take a = -1 to obtain

$$a^{2^{\alpha}-1} = (-1)^{2^{\alpha}-1} = -1$$

which is not congruent to 1 modulo 4 much less modulo a^{α} .

(ii) Write $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ with each $\alpha_i \geq 1$ and $p_1, \dots p_r$ distinct primes. Suppose that the odd prime p is p_1 so that $\alpha = \alpha_1$. By the Chinese Remainder Theorem we may choose an integer, a, such that

$$a = \begin{cases} x \pmod{p_1^{\alpha_1}}, \\ 1 \pmod{p_i} \text{ for } i = 2, \dots r \end{cases}$$

where the multiplicative order of x modulo $p_1^{\alpha_1}$ is $\phi(p_1^{\alpha_1}) = p_1^{\alpha_1-1}(p_1-1)$. Such a choice of a satisfies $\gcd(a,n)=1$. Then $a^{n-1}\equiv 1\pmod{n}$ implies that $x^{n-1}\equiv a^{n-1}\equiv 1\pmod{p_1^{\alpha_1}}$. Therefore $p_1^{\alpha_1-1}(p_1-1)$ divides $n-1=p_1^{\alpha_1}\ldots p_r^{\alpha_r}-1$. If $\alpha_1\geq 2$ then p_1 would divide 1 so we must have $\alpha_1=1$. In this case the condition that $\phi(p_1^{\alpha_1})$ divides n-1 becomes simply $p_1==1$ divides n-1, as required.

(iii) By part (i), $r \geq 2$ in part (ii) and so one of the primes dividing n is odd. By part (ii). n-1 is even because it is divisible by p-1 for some odd prime. Hence n is odd.

(iv) By parts (ii) and (ii), n is a product of distinct odd primes. It remains to show that $n=p_1p_2$ is not a carmichael number when p_1 and p_2 are distinct primes. However the equation

$$n-1 = p_1p_2 - 1 = (p_1 - 1)(p_2 + (p_2 - 1))$$

together with part (ii) would imply that $(p_2 - 1)$ divides $(p_1 - 1)$ and vice versa. This would imply the contradiction that $p_1 = p_2$.